
Modeling Parallel Molecular Simulations on
Amazon EC2

Xiangqiang Xu Gabriel Dunham Xinghui Zhao
Washington State University

{xiangqiang.xu, gabriel.dunham, x.zhao}@wsu.edu

David Chiu
University of Puget Sound

dchiu@pugetsound.edu

Jie Xu
University of Illinois at Chicago

jiexu@uic.edu

Abstract—Cloud computing has been widely used by compu-
tational scientists and engineers as a means to run large-scale
simulations while circumventing capital investment of hardware.
However, a challenging problem is to accurately estimate how
much cloud resources that a specific computation requires, in
order to execute computations in a cost-effective way. In this
paper, we use a real-world molecular dynamics (MD) simulation
as a motivating scenario and present our work in modeling
parallel execution of such a computation on the cloud. Our model
estimates the workload of an MD simulation at fine-grained detail,
and based on that estimate, calculates the time required to run
the simulation. The accuracy of the model has been evaluated
using various types of MD simulations on different scales.

I. INTRODUCTION

The scientific computing community has long relied on
the presence of high-performance systems, e.g., clusters and
supercomputers, and today’s scientific applications enjoy the
plethora of parallel and distributed frameworks, including MPI,
Map-Reduce variants [1], workflow management systems [2]
built on top of them. The emergence of the cloud has been
timely. Given the presence of public clouds, such as Amazon
EC2 [3], users can obtain immediate results without requiring
an initial capital investment of costly computational equipment.

As a result, there is now abundant interest in exploiting
cloud resources to carry out large-scale scientific computations.
One such example is Molecular Dynamics (MD) simula-
tion [4], [5], which aims to model the complex behavior of
liquid molecules and biomolecules in nanometer-scale environ-
ments. MD applications simulate the movements of molecules
based on Newton’s laws of motion [6], using the forces and
distances between molecules and their masses.

A better understanding of the interactions and properties of
these small atoms could lead to a great impact on various areas,
such as the Human Genome Project, gene chips, personalized
molecular diagnostics, and DNA sequencing. However, it is
extremely difficult to perform actual experiments with liquid
molecules and biomolecules at the nanometer scale. These
experiments often involve expensive (≈ million-dollar range)
large-scale equipment, such as a scanning-electron microscope
(SEM), a transmission-electron microscope (TEM), so they
are not always accessible to researchers. Therefore, molecular
dynamics (MD) simulation has become a powerful tool to
investigate molecules at the nanooscale. While simulation can
reduce some costs of doing science, to obtain precise results,
MD simulations often require massive amounts of CPU cycles,
pushing the need for execution on parallel and distributed
systems.

Taking advantage of the computational resources on public
clouds, scientists can execute their MD applications without
having to own high-end computational resources. However,
here is often still a need to estimate these costs. This challenge
is more pronounced when the scientist has certain constraints,
such as accuracy, performance, and/or budget limitations. From
a user’s point of view, being able to predict the behavior of the
cloud to estimate the performance and cost of their simulations
is critical.

In this paper, we propose modeling the performance of
a popular parallel molecular dynamics simulator on clouds.
Specifically, we have modeled MD applications running in
LAMMPS (Large-scale Atomic/Molecular Massively Parallel
Simulator) [7] on the Amazon EC2 cloud. LAMMPS can
simulate a wide range of molecular systems, typically from a
few particles up to millions or billions of particles. The output
of LAMMPS includes locations, trajectories, forces and energy
of each particles in the 3D space. Practically, the scale of a
LAMMPS simulation is limited by computing power, time, and
cost. Our performance model takes a LAMMPS configuration
file as input and predicts with high accuracy the execution time
on Amazon EC2 clouds, as a function of N , the number of
nodes used to run the simulation.

The remainder of this paper is organized as follows. In
Section II, we describe some background information about
the MD simulation software we use in our work, LAMMPS
(Large-scale Atomic/Molecular Massively Parallel Simulator).
In Section III, we present details of our performance model.
To evaluate our model, experiments have been carried out
on Amazon EC2 clouds using various types of simulations,
and the experimental results are presented in Section IV. We
conclude and discuss future works in Section V.

II. BACKGROUND

LAMMPS (Large-scale Atomic/Molecular Massively Par-
allel Simulator) [7] is a widely-used software simulator for
molecular dynamics. Using LAMMPS, scientists can simulate
a variety of systems, including solid-state materials (e.g.,
metals and semiconductors), soft matter (e.g., biomolecules
and polymers), and coarse-grained or mesoscopic systems. The
simulation can be executed at different scales, such as stomic,
meso, and continuum scales.

We chose LAMMPS in our work in part because of its
popularity, and more importantly, due to its flexibility in sup-
porting parallel/distributed execution. LAMMPS can run appli-
cations on single processors, or in parallel on more advanced

hardware, e.g., a high-performance cluster. LAMMPS par-
allelizes MD applications using message-passing techniques
(MPI) [8] by spatially decomposing the simulation domain [9].
In parallel execution, the simulation domain is partitioned
into a number of small 3D sub-domains, and each of which
is assigned to a processor for execution. Each sub-domain
considers its neighbor sub-domains as ghost atoms and store
their information at its own processor. Using this spatial-
decomposition technique, LAMMPS can easily parallelize an
MD simulation and execute it in parallel. This also makes it
easier to run these simulations using resources on the clouds.

Another desirable feature in LAMMPS is that it records
fine-grained performance information during the execution and
provides it at the end of the execution in a log file. Table I
shows a sample LAMMPS output for a MD simulation which
involves 24, 048 atoms and runs on 16 processors.

LAMMPS Output
Loop time of 1109.77 on 16 procs for 10000 steps with 24048 atoms

CPU Time

Pair time (%) = 226.106 (20.3742)
Bond time (%) = 0.776199 (0.0699424)
Kspce time (%) = 166.729 (15.0238)
Neigh time (%) = 28.8686 (2.60131)
Comm time (%) = 179.684 (16.1912)
Outpt time (%) = 303.231 (27.3238)
Other time (%) = 204.372 (18.4157)
FFT time (% of Kspce) = 70.3567 (42.1981)
FFT Gflps 3d (1d only) = 1.07363 9.16506

Atoms Per Processor

Nlocal: 1503 ave 1524 max 1489 min
Histogram: 2 0 5 0 5 1 1 1 0 1
Nghost: 9973.75 ave 10048 max 9919 min
Histogram: 3 2 0 4 2 1 0 1 1 2
Neighs: 530928 ave 543321 max 516004 min
Histogram: 3 1 1 2 0 0 1 3 2 3

Aggregated Statistics

Total # of neighbors = 8494854
Ave neighs/atom = 353.246
Ave special neighs/atom = 2.34032
Neighbor list builds = 1020
Dangerous builds = 0

TABLE I: LAMMPS Sample Output

As shown in Table I, LAMMPS gives the total execu-
tion time (loop time) and three sets of information about
the execution. The first section gives the breakdown of the
CPU runtime (in seconds) into major categories. The second
section lists the number of owned atoms (Nlocal), ghost atoms
(Nghost), and pair-wise neighbors stored per processor. The
max and min values is the spread of these values across
processors over a 10-bin histogram. The total number of
histogram counts is equal to the number of processors. The
last section lists aggregate statistics for pair-wise neighbors
and special neighbors of which LAMMPS keeps track. The
number of times that neighbor lists is rebuilt during the run
is given, as well as the number of potentially “dangerous”
rebuilds, which are the rebuilds triggered by atom movements.
They are considered dangerous because it is likely that force
interactions are missed by atoms moving beyond the neighbor
skin distance before a rebuild takes place.

We chose two representative MD applications and executed
them under varying hardware settings, i.e., number of nodes.
The first example is an MD simulation in which the atoms are
uniformly distributed in the simulation domain. Figure 1(a)
illustrates the CPU time breakdown of the execution of this
simulation, when the number of processors (nodes) are 2, 4,

2 4 8 16
0

1

2

3

4

5

6

7
x 10

4

Number of nodes

E
x
e

c
u

ti
o

n
 t

im
e

 b
y
 p

o
rt

io
n

s
 (

s
e

c
)

Pair time

Bond time
Kspce time

Neigh time

Comm time
Outpt time

Other time

(a) Uniform Simulation (atoms: 512; timesteps: 5k)

2 4 8 16
0

500

1000

1500

2000

2500

3000

Number of nodes

E
x
e

c
u

ti
o

n
 t

im
e

 b
y
 p

o
rt

io
n

s
 (

s
e

c
)

Pair time

Bond time
Kspce time

Neigh time

Comm time
Outpt time

Other time

(b) Peptide Simulation (atoms: 24048; timesteps: 10k)

Fig. 1: CPU Time Breakdown of Example MD Simulations:
Uniform and Peptide

8, and 16, respectively. In these runs a significant amount of the
execution time is taken by the Kspace category, which is for
computing long-range coulombic interactions. Other categories
only contribute a small amount of execution time.

The second example is an MD simulation with a different
atom distribution pattern: peptide simulation. This simulation
models the interactions of peptide molecules in a water en-
vironment. The dynamics of peptides in water plays a critical
role in determining protein structures and functions. This infor-
mation will provide profound implications in clinical research
for curing various diseases. Because there are different types
of molecules and the distribution of these molecules is non-
uniform, the CPU-time breakdown shows a much different
pattern (Figure 1(b)).

For peptide simulation, a main contributor of the execution
time is pair time, which is for calculating non-bonded or
pair-wise forces between atoms. Other contributing categories
include Kspace time, neighbor time, communication time and
output time. The neighbor category represents the time used
to build and store neighbor lists. The communication category
represents the time that it takes to perform inter-processor
communication, typically containing ghost atom data. This
usually involves MPI message exchanges with six neighboring

processors in the 3D logical grid of processors mapped to the
simulation box. The output category represents the time that
it takes to generate output from the simulation. More detailed
information about these categories can be found in LAMMPS
Developer Guide [10]. The CPU breakdown of the execution
time provided by LAMMPS is critical for our work. It enables
fine-grained modeling on computation and communication, as
described in Section III.

III. PERFORMANCE MODEL

A number of frameworks and software packages have
been developed for supporting cloud-based MD executions,
such as AceCloud [11], CycleCloud [12], and GROMACS
4.5 [13]. However, estimating the performance of large-scale
simulations remains a challenge. Being able to predict the
performance is desirable, as scientists may need that informa-
tion to estimate their costs, time constraints, and the resource
requirements. In this section, we describe the performance
model we developed for MD simulations and the evaluation
of the model on the Amazon EC2 cloud.

Table II shows the notations that are used in our perfor-
mance model. a denotes the number of atoms in the simulation,
representing the size of the computation. N is the number of
nodes on which the simulation executes. rs is the extended
cutoff distance that is defined in LAMMPS. It is a constant
for a specific input. t is the time steps, i.e., iterations to run
the simulation. The work of the computation (Wcomp) and
work of communication (Wcomm) are the workload for the
computation component and communication component of the
simulation, respectively. Rcomp and Rcomm are the rate of
computation and communication, which are obtained from the
baseline execution and used in performance prediction.

Parameters Descriptions
a number of atoms or particles
N number of nodes
rs extended cutoff distance
t time steps

Wcomp work of computation
Wcomm work of communication
Rcomp rate of computation
Rcomm rate of communication

TABLE II: Model Parameters

As the first step towards performance prediction, we model
the workload of an MD simulation for computation and com-
munication. Based on the spatial-decomposition algorithm [9]
used in LAMMPS, we derive the workload for computation
and communication in a single time step, shown in equation 1.
The first term represents the workload for constructing lists of
interacting pairs for the sub-domain, and workload for calcu-
lating the atom positions which will be sent to other neighbor
sub-domains. The second term represents the workload of
updating atom positions in the sub-domain. Note that for each
rectangular 3D sub-domain, there are 6 neighbor sub-domains.

Wcomp = 2

(
a

2N
+ 6rs

[a
N

]2/3)
+

a

N
(1)

Similarly, we derive the workload for communication, as
shown in equation 2. This represents the workload for exchang-

ing atom positions across all 6 boundaries of the sub-domain.

Wcomm = 6rs

[a
N

]2/3
(2)

For a given hardware configuration and a specific simulation,
the two workload parameters Wcomp and Wcomm are fixed.
We then use a baseline execution to derive Rcomp and Rcomm

as follows,

Rcomp =
Wcomp

(Texec − Tcomm)
(3)

Rcomm =
Wcomm

Tcomm
(4)

where Wcomp and Wcomm are calculated using equation 1 and
2 for the baseline execution, Texec is the total execution time
of the simulation, and Tcomm is the communication portion
of the execution time, which can be obtained from the CPU
breakdown time of the baseline execution.

Using Rcomp and Rcomm, we can predict the execution
time of a new simulation in a different hardware setting, as
follows,

Tpredict = t×
(
Wcomp

Rcomp
+

N ×Wcomm

Rcomm

)
= t×

(
2a
N + 12rs[

a
N]2/3

Rcomp
+

N × 6rs[
a
N]2/3

Rcomm

)
(5)

Equation 5 gives the predicted execution time of a simulation
which is running on N nodes for t time steps.

IV. EVALUATION

We have evaluated our performance model using different
types of MD simulations, running on Amazon EC2 clouds
at different scales. The Amazon nodes we use to run our
experiments are all m1.large, which have 2 cores (4 ECUs),
7.5GB RAM, and 850 GB disk.

To evaluate the accuracy of our model, we run both uniform
and peptide simulations on m1.large nodes using different
settings (N = 2, 4, 8, 16), and compare the actual execution
time with the predicted execution time Tpredict derived using
equation 5. Figure 2 shows the experimental results for uniform
simulations of different sizes with 5000 time steps. We then
run the case with 16384 atoms for different time steps, and the
results are shown in Figure 3. For larger simulations (in size or
in time steps), the model tends to over-estimate the execution
time for the 2-node case, but for most of the experiments, it
can accurately predict execution time.

We have also evaluated our model using a peptide simula-
tion with 24048 atoms non-uniformly distributed. The results
illustrate that our performance model is accurate for this non-
uniform simulation, as shown in Figure 4.

The performance model can be used by scientists who
would like to run their simulations on the clouds. Before they
use the model, they need to run a small simulation on the
computational nodes, in order to establish a baseline. After
that they can use the model to predict the performance of
their simulation under different hardware settings, and estimate
the cost of such executions. Being able to accurately predict
the resource requirements and performance of a simulation

 0

 20000

 40000

 60000

 80000

 100000

 120000

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

T
o
ta

l
L
o
o
p
 T

im
e
 (

se
c)

Number of nodes

1024 atoms
4096 atoms

16384 atoms

65536 atomsReal

Model

Fig. 2: Uniform Simulation (t = 5000)

 0

 10000

 20000

 30000

 40000

 50000

 60000

2 4 8 16 2 4 8 16 2 4 8 16

T
o
ta

l
L
o
o
p
 T

im
e
 (

se
c)

Number of nodes

1000 timesteps

5000 timesteps

10000 timestepsReal

Model

Fig. 3: Uniform Simulation (a = 16384)

before its execution is critical, especially when the size of the
simulation scales.

V. CONCLUSION

Molecular dynamics (MD) simulation is a widely used tool
for modeling the properties and interactions of liquids, solids,
and molecules. Recently, there has been increasing interest in
running MD simulations using shared resources on the cloud.
In this paper, we model the computation and communication
components of an MD simulation separately to predict its
execution time on Amazon EC2. Experimental results show
that our performance model is accurate and reliable for various
types of MD simulations. For future work, we will develop
resource allocation algorithms for MD simulations, by taking
into consideration both performance and budget constraints.
The performance model presented in this paper is a critical
step towards this direction.

ACKNOWLEDGMENT

The authors would like to thank the generous support of
an Amazon Web Services Research Grant.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2 4 8 16 2 4 8 16 2 4 8 16

T
o
ta

l
L
o
o
p
 T

im
e
 (

se
c)

Number of nodes

1000 timesteps

5000 timesteps

10000 timestepsReal

Model

Fig. 4: Peptide Simulation (a= 24048)

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, ser. OSDI’04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 10–10.

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
10–10.

[3] “Amazon elastic compute cloud, http://aws.amazon.com/ec2.”
[4] F. F. Abraham, “Computational Statistical Mechanics Methodology,

Applications and Supercomputing,” Advances in Physics, vol. 35, no. 1,
pp. 1–111, 1986.

[5] J.-P. Ebejer, S. Fulle, G. M. Morris, and P. W. Finn, “The Emerging Role
of Cloud Computing in Molecular Modelling,” Journal of Molecular
Graphics and Modelling, vol. 44, pp. 177–187, 2013.

[6] W. F. van Gunsteren and H. J. C. Berendsen, “Computer Simulation
of Molecular Dynamics: Methodology, Applications, and Perspectives
in Chemistry,” Angewandte Chemie International Edition in English,
vol. 29, no. 9, pp. 992–1023, 1990.

[7] S. Plimpton, P. Crozier, and A. Thompson, “LAMMPS: Large-Scale
Atomic/Molecular Massively Parallel Simulator,” Sandia National Lab-
oratories, vol. 18, 2007.

[8] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-Performance,
Portable Implementation of the MPI Message Passing Interface Stan-
dard,” Parallel computing, vol. 22, no. 6, pp. 789–828, 1996.

[9] S. Plimpton, “Fast Parallel Algorithms for Short Range Molecular
Dynamics,” Journal of Computational Physics, pp. 1–19, 1 March 1995.

[10] “Sandia Corporation: LAMMPS Developer Guide,” pp. 4–5, 23 Aug
2011.

[11] M. Harvey and G. De Fabritiis, “AceCloud: Molecular Dynamics Sim-
ulations in the Cloud,” Journal of chemical information and modeling.

[12] “CycleCloud - Accelerating Molecular Dynamics with Large Scale
HPC.” [Online]. Available: http://cyclecomputing.com/

[13] S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov,
M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, et al.,
“GROMACS 4.5: A High-Throughput and Highly Parallel Open Source
Molecular Simulation Toolkit,” Bioinformatics, p. btt055, 2013.

