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Abstract—Limited battery power has long been a challenge for
mobile applications. As a result, the work in power monitoring
and management has attracted a great amount of interest. In
this paper, we propose a model to estimate power consumption
of mobile applications at run-time, based on application-specific
per-action power profiling. In addition, we have developed on-line
optimization techniques which help maximize users’ experience
while conserving power. Our power model is lightweight and
flexible, in that it can be used by any mobile applications as
a plug-in, and it can support user-defined optimization mecha-
nisms. This approach has been evaluated using a case study, a
mobile application for field studies, and the experimental results
show that our model accurately captures power consumption of
the application, and the model can be used to optimize the power
consumption based on users’ needs.

I. INTRODUCTION

There has been rapid growth in the population of mobile
device holders. As shown in a recent study [1], by the year
2013, 91% of the world population have access to smart
phones. This number is expected to continue growing, and
in fact, the number of mobile devices in use will soon exceed
the worldwide population by 2017 [2]. As for the time mobile
phone holders spent on these devices, 80% is within various
applications [1]. Within the past decade, both the number
of mobile applications as well as their functionalities have
been dramatically increasing. However, despite the widespread
functionalities that mobile applications provide, they all rely
on the battery life of the hosting devices to operate, which
has become a major bottleneck [3]. As a result, approaches
in power modeling and management for mobile devices have
been attracting a significant amount of attention. While most
of the existing power modeling and optimization approaches
focus on profiling and controlling power consumption at the
level of system [4] or hardware [5], we believe that an ap-
plication level, lightweight power modeling and management
technique is more flexible and highly desirable.

Consider a motivating example: a group of scientists wish
carry out a field study, for which they use a mobile app to track
locations, collect samples, communicate with each other, etc.
During the trip, this app will be the dominating application
running on the mobile devices of all the participants. Here in
this case, the power optimization objective is very application-

specific. To guarantee the quality of the field study, if the
battery power is sufficient, the application should be executed
as is, and there is no need to perform power optimization. On
the other hand, when the battery is not sufficient for the field
trip, power optimization related actions should be taken. In
that case, however, the objective of the optimization then is to
conserve the power consumption so that the battery life can last
until the end of the field study, instead of optimizing the power
consumption as much as possible for the entire system at all
time, as seen in generic power management approaches for
mobile devices. Therefore, the power modeling and manage-
ment module must be application-specific for multiple reasons.
First, it should be aware of the power consumption of each
type of user actions in the application, in order to provide fine-
grained power monitoring and control. Second, it must be able
to invoke the power optimization when it is necessary to do so,
instead of running it all the time. Third, the power optimization
should aim for conserving power to a certain extent so that
the predefined tasks can be completed, while still maximizing
users’ experience. These objectives are difficult to achieve
without application-level power modeling and management.

In this paper, we address these challenges by developing
a power modeling, monitoring, and management framework.
Specifically, we first propose a model which can be used to
estimate the power consumption of a mobile application at
run-time. This model takes into consideration both the system
parameters and application-specific user actions. We show
that based on a set of per-action power profiling data, the
model can accurately estimate the power consumption of the
application over time. We then demonstrate how the proposed
model can be incorporated with the power profiling data of
an application, and used as the application’s power control
plug-in, for monitoring and optimizing power consumption
as needed at run-time. To this end, we have implemented
the motivating example described above, and performed a
case study in the context of an actual usage scenario in field
science. Finally, we have developed and evaluated different
online optimization techniques which reflect users’ needs. The
experimental results show that our model can accurately cap-
ture the power consumption of the application over time, and
it can be used to support user-defined run-time optimizations.



The contributions of this work are multifold:
• The power management module is lightweight, and easy

to implement as a plug-in instrument for mobile applica-
tions.

• Our approach monitors and dynamically regulates power
consumption for mobile applications at run-time while
maximizing user experience.

• To test our framework’s applicability and to measure its
effectiveness, we performed a case study in the context
of an actual usage scenario in field science.

• We have open-sourced our power management frame-
work for the Apple iOS [6].

The rest of the paper is organized as follows. Section II
reviews related work. Section III presents our approach, in-
cluding power profiling and modeling. Section IV uses a case
study, a mobile application for scentific field study, to illustrate
how our model can be incorporated in a mobile application. To
evaluate the effectiveness of our approach, experiments have
been carried out, and the exeperimental results are presented in
Section V, and Section VI concludes the paper and proposes
future directions of this work.

II. RELATED WORK

Limited battery life has long been a challenging problem
for handheld devices. Recently with the growing popularity
of smart phones, which are equipped with various of sensing
instruments, this challenge has become even more pronounced.
Therefore, power modeling and management techniques on
smart phones have received increasing attention.

Many power modeling approaches for mobile devices mea-
sure and estimate the power consumption for specific hardware
components. This can be done by inserting sense resistors
on the power-supply rails of the hardware components be-
ing measured [7], or using a power suspend driver to keep
track of the power consumption of each hardware compo-
nent, which is required to register with the power suspend
driver in advance [8]. Another class of approaches focus on
a specific type of power-consuming functions, account for
power consumed by that particular function, and then perform
corresponding optimization algorithms. These function types
being studied include mobile networking technologies: 3G,
GSM, and WiFi [9], radio access network [10], and global
positioning system (GPS) [11]. In these approaches, the power
consumption can be optimized by designing power-aware
algorithms which properly schedule the execution of those
activities [9], or scheduling operations of turning on and off
of those functions [11]. Similarly, a variety of system-level,
energy-efficient scheduling algorithms have been proposed,
which incorporate deadlines [12], CPU frequencies [13], and
temperatures [14].

Besides the approaches that measure and modele the
power consumption of hardware components or some specific
functions, a finer-grained approach for power modeling is
based on program analysis, in which energy consumption
is mapped to program structure. These approaches include

PowerScope [15], eLens [16], and Instruments [17]. Power-
Scope combines hardware instrumentation with kernel soft-
ware support to measure the current magnitude and perform
statistical sampling of system activities. Elens provides a
mechanism to profile energy consumption at varying levels
of granularity including application, method, path, and line of
source code. Instruments profile processor behavior and energy
consumption of user applications on iOS devices. It supports
both real-time monitoring of the system, as well as offline data
collection and analysis.

Our approach presented in this paper is different from
the above existing work. It is an application-based approach,
which can be implemented as a plug-in for any mobile
applications. It does not focus on any hardware component
or any specific functions of the device. Instead, it accounts for
and estimates power consumption of various activities of the
application. In addition, our approach enables users to define
optimization algorithms based on their own needs, which is
different from the existing power optimization approaches.

III. POWER MODELING

In a mobile application, usually there are a limited num-
ber of user action types. Many of these action types are
generic, and can be seen in a variety of applications, such as
switching views, sending messages, and pulling information
from servers. Therefore, it is possible to build a generic
energy consumption model based on users’ actions, and then
refine it by profiling energy consumption of each action.
Once an accurate energy consumption model is built, energy
optimization techniques can be developed to minimize the
energy consumption while maintaining users’ experience. In
this section, we present our energy model and an example
optimization technique.

A. Modeling Energy Consumption

As the first step toward optimizing power consumption, we
estimate the energy consumption for a mobile application in
a per-time-interval basis. That is to say, in each time interval,
we calculate the energy consumption in the next time interval
by adding up energy that is consumed by each action. We
are particularly interested in two salient characteristics that
typically dominate a mobile application’s energy consumption:
the device’s backlight level x ∈ [0, 1], and a set of energy-
intensive actions A = (a1, ..., ak) that are performed during
use, such as typing, exchanging information with a server,
updating GPS location, etc. With respect to A, we further
define a power function vector P = (p1, ..., pk), where
pi : R → R maps a given backlight level x ∈ [0, 1] to the
power consumed by action type ai ∈ A. Similarly, an action
duration vector L = (l1, ..., lk) can be defined, where li is
the time it takes to perform action ai ∈ A. For the time
interval, which is the basis of estimating energy consumption,
we assume a fixed-time scale t1, . . . , tn, where ti is a time
point, and τ = tj − tj−1 denotes the time interval.

We define Eτ – the estimated energy consumption of a
mobile application within time interval τ – as the combination



of the energy required to complete all actions and the static
energy leakage during the idle time within τ :

Eτ = Eactions + Eidle (1)

Given a backlight level x, power vector P = (p1, ..., pk) and
action duration vector L = (l1, ..., lk), we expand our model
as follows,

Eτ =

k∑
i=1

(pi(x) · ni · li) + pidle(x)

[
τ −

k∑
i=1

(ni · li)

]
(2)

where ni denotes the number of times that action ai is
performed within time interval τ , and pidle(x) is the power
consumed by the application given backlight level x when no
actions are being performed. This energy estimation model is
generic, however, several terms in the model, namely pidle(x),
pi(x), and li, are either device-dependent or application-
dependent. They can be obtained statistically through profiling,
which is described in greater detail in sections III-B and IV-B.

B. Device Power Profiling

As shown in our energy consumption model (equation 2),
we model the idle power consumption pidle(x) as a function
of the backlight level x. This function is device-dependant,
and we use an iPad2 as an example to illustrate how to derive
this function. We set the backlight level to be different values
ranging from 0.0 (complete darkness) to 1.0 (full brightness),
let the device idle for 500 seconds, and measured the power
consumption using a wattsup meter [18]. The results are shown
in Figure 1(a). Then we performed a regression on the plot,
and derived Equation 3, where P is the power consumption
and x denotes the backlight level from 0.0 to 1.0:

pidle(x) = −0.9518x3 + 3.3042x2 + 0.77x+ 1.9021 (3)

Equation 3 can then be used in the model to represent idle
power for the specific device iPad2.
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Fig. 1: Power Profiling for Idle and Typing Status

A generic type of action on mobile devices is typing. Many
other actions are always accompanied with typing. The energy
consumed by typing depends on the number of characters
that are typed and the time interval during which the typing
is performed. To better understand how typing rate affects
energy consumption, we characterize the typing operation. To

this end, we first fix the experiment time to be 1 minute,
and then for each experiment, we type a different number of
characters with the keyboard. Finally, we calculate the average
power usage in this 1-minute window as the power level
for a specific typing rate. Figure 1(b) shows the relationship
between power consumption and typing rate. The regression
function is formulated in Equation 4:

ptyping(α) = 0.1369log(α) + 5.0536 (4)

where α denotes the typing rate. With the regression func-
tion, the energy model can be customized from person-to-
person.

For other application-specific user actions, application de-
velopers can perform power consumption profiling statistically,
and derive corresponding pi(x) for their applications. This is
described in greater detail in our case study, in Section IV-B.

C. Optimization

Since the energy consumption model has been built, we can
then use it to implement optimization techniques for different
purposes. For instance, suppose we want to maximize the user
experience, which may increase energy costs, but meanwhile
save enough battery power to meet the desired duration of
the application. For illustration purpose, we assume the user
experiment is proportional to the backlight level, i.e., the
higher the backlight level, the better the user experience is.
For this simple scenario, we can formulate the optimization
problem as follows:

maximize x (5)
subject to

(tlast,tfinish)∑
τ=(tnow,tnow+w)

Eτ ≤ Rtnow
(6)

0 ≤ x ≤ 1 (7)

Specifically, the optimization goal is to maximizing the
backlight level – so that the user’s experience is maximized
– under the constraint that the device’s battery can last until
a predefined time point (tfinish). We divide the time period
from the current time (tnow) to tfinish into a number of
time intervals with size w, 1 and use the energy consumption
model (Equation 2) to estimate the required energy for each of
the time interval. Equation 6 describes the constraint that the
estimated energy cost for the next time step must not exceed
remaining energy in the battery, Rtnow

. At the end of each
time interval, the backlight level can be adjusted on the fly, in
order to meet the optimization goal.

Note that the above optimization problem is merely an
example for illustration purposes. More complicated optimiza-
tion techniques can be developed given the proposed energy
consumption estimation model.

1The size of the last time interval may be less than w.



IV. CASE STUDY: A MOBILE APP FOR FIELD SCIENTISTS

To illustrate how our energy estimation model can be incor-
porated in a specific application, we developed a mobile app
for coordinating field study trips. This application allows users
to (1) design a field outing, (2) share logistical plan with all
participants in real-time, (3) share the geographic location and
actions performed by all users, and (4) communicate in real-
time via instant messages. All user actions, such as completing
a recording or sampling, are logged by time and location. We
chose this application to illustrate our energy model because it
is a representative mobile application which involves several
common user actions, such as sending/receiving messages,
updating GPS locations, and switching views.

A. System Design

The design of our scientific field study application is shown
in Figure 2. The system is composed of three parts: a back-
end server, a front-end user interface, and a power management
module. The design adopts a client-server architecture pattern,
which is widely used in many mobile applications.

Main 
Database

Event 
Database

Record

App (Client) Server

Brightness
Control

Screen

Ad
ju

st

Current battery life, energy model

Power Controller

Location 
Tracking

Map

Send/
Receive 

Message 
table

Task 
Status 

Tracking

Task 
View

Input

Fig. 2: System Overview

As shown in Figure 2, the back-end server maintains a
database, which keeps track of users’ personal information,
locations, events, etc. The front-end mobile application is
composed of four components: a location tracking component
which is responsible for loading the map, and tracking every
user’s location; a message handling component which supports
user communication through instant messages; a task status
tracking component which is responsible for communicating
with the back-end server to update task status; and a record
component which enables users to playback the historical
events.

B. Application Power Profiling

Using the field study mobile application, we show how the
power consumption of application-specific user actions can be
derived, i.e., pi(x) in the energy model (Equation 2).

In our application, there are six types of basic actions:
• Updating and requesting location information through

GPS and network
• Switching between different views
• Sending messages
• Fetching messages
• Fetching new tasks
• Submitting finished tasks

For each action, we start the application and continuously
run the single action for a 500-second period, and record the
power usage. We then plot the probability density function
(PDF) based on the experimental data for each action, as
shown in Figure 3.

1.8 2 2.2 2.4 2.6 2.8 3
Power(watt)

0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y 
D

en
si

ty
 F

un
ct

io
n 

(P
D

F) GPS

(a) GPS Request

1.8 2 2.2 2.4 2.6 2.8 3
Power(watt)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y 
D

en
si

ty
 F

un
ct

io
n 

(P
D

F) Switching View

(b) Switching View

1.8 2 2.2 2.4 2.6 2.8 3
Power(watt)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y 
D

en
si

ty
 F

un
ct

io
n 

(P
D

F) Sending Message

(c) Sending Message

1.8 2 2.2 2.4 2.6 2.8 3
Power(watt)

0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y 
D

en
si

ty
 F

un
ct

io
n 

(P
D

F) Fetching Message

(d) Fetching Message

1.8 2 2.2 2.4 2.6 2.8 3
Power(watt)

0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y 
D

en
si

ty
 F

un
ct

io
n 

(P
D

F) Fetching Task

(e) Fetching Task

1.8 2 2.2 2.4 2.6 2.8 3
Power(watt)

0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y 
D

en
si

ty
 F

un
ct

io
n 

(P
D

F) Submitting Task

(f) Submitting Task

Fig. 3: Probability Density Functions (PDF) for Power
Consumption of User Actions (Backlight=0.0)

We choose the peak value from the probability density
function graph, and use it in the model as the power consump-
tion of the corresponding action. Note that the experiments
are carried out under the backlight level of 0.0, therefore,
these values can be used in our energy consumption model
(equation 2) as pi(0). Assuming at a certain backlight level,
the extra power consumed by an action on top of the idle
power at the same backlight level is a constant, we can derive
pi(x):

pi(x) = pidle(x) + (pi(0)− pidle(0)) (8)

Equation 8 can be used in our energy consumption model,
representing power consumption of a specific action.

Note that the energy model also requires an action duration
vector L, for which we simply calculate the average duration
for each action from our experiments. The two vectors, pi(x)
and L, can be plugged in our energy model for estimating the
power consumption of application-specific user actions.



V. EVALUATION

A number of experiments have been carried out to evaluate
the accuracy of our energy model, as well as the optimization
tehcniques.

A. Experimental Setup

All the experiments were carried out on iPad2s, with 1.0
GHz Apple A5 CPU, 512MB RAM, a total battery capacity
of 6583 mAh, and operating system version iOS 6.1.2.

To effectively evaluate the energy model proposed, we
have designed several scenarios that represent typical usage
patterns of the application. The first scenario, Regular-user
experiment, represents a regular field study. It involves all the
operations that a user would perform in a field trip, including
sending messages, request GPS, and submitting a finished task.
The second scenario, Message-heavy experiment, represents
the “message-heavy” mode, where user sends messages more
frequently while performing less other operations. The third
scenario, Note-taking experiment, represents the case where a
user focuses on taking notes of the samples while perform-
ing less interactions with the server. For each scenario, we
design experiments with activities which take 15 minutes. All
experiments are conducted in the School of Engineering and
Computer Science building at Washington State University
Vancouver campus. The communications between iPads and
the server are through a WiFi network.

We use the Watts-Up meter for power measurement [18].
The meter measures voltage and current a thousand of times
per second, so it has a quick response time which enables
users to “see the surge” of power when appliances are first
turned on. The peak value display captures this surge so it
is displayed if it happens too fast to see live. This feature
meets our requirements very well, as we want to characterize
the user actions in our app, which always happen quickly
and randomly. Also the accuracy of Watts-Up is within 1.5%,
which outperforms many tools we have tried. The meter can
record the data as fast as once per second so we can see
the load profile as it changes over the course of the entire
experiment. In addition, there is a USB connector on the side
of the meter. With a USB cable and attached software we can
download the power usage data directly to a PC.

To measure the power usage of an iPad, we first charge the
iPad battery to full. Then connect the iPad to watts-up and
make sure the power reading is stable at 0.5 watts when the
iPad is in sleep mode. When we turn the iPad on and start
our application, we can assume that the power reading from
Watts-Up reflects the real-time power usage of the application.
The data is recorded once per second.

Once the application is launched and the user has logged
in, several threads will begin running in the background:

• Thread 1: The user reports current location to the server
and pulls other team members’ locations every 5 seconds.

• Thread 2: The user pulls new messages from server every
5 seconds.

• Thread 3: The user pulls new tasks from server every 5
seconds.

These threads ensure the users always obtain the up-to-date
information in a field study. Note that the polling frequency
can be adjusted to balance between performance and energy
consumption, which is described in the following sections.

B. Evaluating Energy Model

Experiments have been carried out to evaluate the accuracy
of our energy model under the three different scenarios. For
each scenario, we executed the same experiment with three
backlight levels: 0, 0.5, and 1. For each experiment, we logged
the actions performed by the user and generated the estimated
power consumption by our model at a one-second granularity.
Due to the limited space, we only present the experimental
results from the cases with a backlight level of 0.0, as shown
in Figures 4 to 6.
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Fig. 4: Model Accuracy Evaluation (Regular User Sce-
nario, Backlight = 0.0)

Figure 4 shows the real-time power usage in the regular-
user experiment. In this scenario, the power bounces between
1.9 watts and 2.0 watts when backlight level is at 0.0. There
are power peaks taking place at some time points during
the experiment, especially at the beginning and the end of
the experiments. It is because these are the action-heavy
time intervals. Some actions, such as logging-in, sending
instant messages, or submitting finished tasks usually involve
a combination of several basic actions. It can be seen that
our model is accurately capturing the energy consumption of
these actions. However, the model sometimes gives a relatively
higher prediction than the actual measurement. We believe this
is due to over-estimation in deriving action duration li. As
we clock the networking actions’ time by measuring the time
from sending the request to receiving the response from the
server, we include transmission time into the action execution
time. In a real scenario, unexpected network delay may affect
this measurement, therefore, the model gives a higher energy
consumption prediction.

We also calculated the cumulative energy consumption,
which is the integral of the previous power-time function, i.e.,
summing up the total energy consumed in an experiment. We
compare the actual measurements from the Watts-Up meters



and the energy consumption estimated by our model. The error
of our model is approximately 2%.
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Fig. 5: Model Accuracy Evaluation (Message-Heavy Sce-
nario, Backlight = 0.0)

In the message-heavy experiment, we perform a “sending
message” action every 60 seconds without performing other
types of actions. Figure 5 shows the real-time power usage
and overall energy consumption results. The real-time power
figure well captures the login action along with all the sending
message actions. It over-estimates the power usage for some
sending actions due to the same reasons mentioned above.
However, experimental results on cumulative power show that
the error of our model is less than 10 joules, i.e., 0.79%
of the total power consumption, indicating that it has well
characterized the message sending action.

In the note-taking experiment, we perform the note-taking
action every 180 seconds. This experiment involves many
typing actions, but less interaction with the server. Because
it is difficult to accurately capture a user’s typing rate, we use
a fixed value in our model. Based on previous studies [19], the
average typing speed on iPad is approximately 45 words per
minute. In addition, statistics show that the average number
of letters in an English word is 4.5. Figure 6 shows the
results in both real-time and cumulative energy consumption.
Although we use a static typing rate assumption, the model
still predicts the real-time power usage very well. The total
energy consumption figure shows that the error of our model
is approximately 1.5%.

The experimental results from all three scenarios illustrate
that our energy model can accrately estimate energy consump-
tion of a mobile application in real-time, despite of different
usage patterns.

C. Evaluating Optimization Techniques

For optimization, we have implemented the simple opti-
mization algorithm described in Section III-C, and investigated
how the application behaves when the battery is running low.
Specifically, we want to know whether the battery could last
long enough to meet the desired duration of a field trip and
how the backlight level will be adjusted. Before describing
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Fig. 6: Model Accuracy Evaluation (Note Taking Scenario,
Backlight = 0.0)

the experiments, we define the parameters we used in our
optimization, as shown in Table I.

Parameters Definition
tfinish Desired experiment duration, or the finish time of

the experiment. This value is pre-defined before an
experiment.

w The sliding window size, or the estimation length.
It defines how far into the future the model will be
predicting.

τ Optimization interval. This value defines how fre-
quently the optimization algorithm is invoked.

Action rate For the time being, all the fetching actions are
performed at a frequency of every 5 seconds.

x Backlight level. This value will be changed from
time to time based on the output of the algorithm.

TABLE I: Parameters Used in Optimization

In our experiments, we used five different sliding window
sizes w, which are 5 minutes, 10 minutes, 20 minutes, 30
minutes and 60 minutes. We set the desired experiment
duration tfinish to be 1 hour. In each experiment, we drain
the battery of the iPad to 12%, which can be approximately
converted to 10000 joules remaining. In all the experiments,
the optimization interval τ is set to be 5 seconds. We in total
conducted four sets of experiments, including three scenarios
described earlier, and an idle mode, where the user does not
perform any active actions.

As shown in Figure 7, optimizations with a window size
w ≥ 20 minutes meet the desired experiment duration. In
general, the battery life increases with the window size,
because with a larger window size, the power module need
to ensure the power supply in a longer time interval, which
leads to a more conservative output of backlight level. Even
with a window size of 5 minutes, the battery life is extended
by 15% compared to the one without optimization. Figure 7
plots the backlight trend as the experiment goes on. In general,
the backlight starts at a high level (1.0), and drops at some
point and then rises in the end. With a larger window size, the
backlight level tends to drop at an earlier time. This again can
be explained by the fact that a larger window size leads to a
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Fig. 7: Optimization Algorithm Performance (Regular-
User Mode)

more conservative power supply. In an extreme case where we
set the window size to be 60 minutes, which is the same as the
desired experiment duration, the backlight level starts at 0.4
and keeps adjusting to a higher level as experiment continues.

In order to learn the extra energy consumption when running
our algorithm, we conduct a series of experiments with differ-
ent value of τ . That is, we invoke the optimization algorithm
at different rate. All the experiments are conducted under idle
mode, with back light set to be level 1.0. Each experiment
lasts 15 minutes.

Figure 8 shows that when the optimization is run every sec-
ond, the energy consumption will increase by a large amount
(5858 joules in total). However, if we run the optimization with
an interval more than 5 seconds, the total energy consumption
remains unchanged (around 4000 joules). So we can make the
assumption that with a time interval of 5 seconds or more,
there are no extra energy consumption brought by running the
optimization itself.

D. Customized Optimization

The optimization results presented herein is based on the
simple algorithm, described in Section III-C, which adjusts
backlight level at run-time to maximize user’s experience
while attempting to conserve energy until a predefined time
point. It is worth noting that this optimization is merely for
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Fig. 8: Total Energy Consumption When Executing Opti-
mization at Different Rate

illustration purposes, and the users can easily replace this
optimization algorithm with their own customized version.
This enables users to optimize energy consumption based on
their own needs, harnessing the accurate estimation on energy
consumption provided by our model.

To illustrate this flexibility, we have implemented a different
optimization algorithm which adjusts two parameters, back-
light level, and the action rate. Recall that the application pe-
riodically pulls information from the server and GPS, and the
frequency of the update actions can be used in the optimization
algorithm as a tunable parameter, similar to the backlight
level. Specifically, at the end of each time interval, the power
management module estimates the energy consumption and
checks if the remaining energy is enough to carry out the
whole experiment. If not, it decreases both the backlight level
and the action frequency, one at a time, in order to optimize
the energy consumption so that the battery can last till the end
of the experiment.

The results of this customized optimization are shown
in Figure 9. Figure 9(a) compares the original optimization
algorithm, which uses a static action rate, and the customized
algorithm which adjusts both the backlight level and the action
frequency. The experimental results show that with dynamic
action rate, the customized optimization algorithm conserves
more energy than the original one. Figure 9(b) shows the
changes of the two parameters at run-time.

VI. CONCLUSION

In this paper, we proposed a light-weight, on-line power
monitoring and control mechanism for mobile applications.
Specifically, we developed a power consumption model based
on profiling of various types of user actions in the application.
The model enables users to predict power consumption on
the fly at run-time, and develop effective power optimization
techniques for various purposes. We then used a case study,
a mobile application for coordinating field study trips, to
illustrate the effectiveness and flexibility of our approach.
Experimental results show that our energy model can accu-
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Fig. 9: Customized Optimization Algorithm Performance

rately predict the power consumption of the application under
different usage patterns. In addition, we also developed two
simple optimization mechanisms which adjust the backlight
level and action frequency during the course of execution, so
that the battery can last until the end of the field study. This
approach opens up opportunities for accommodating various
user-defined optimizations.

Work is ongoing in a number of directions. We will explore
the possibilities of improving our energy consumption model
by using machine learning techniques in profiling the power
consumption of different user actions, as well as finding
the durations for these actions. We will also investigate the
tradeoff between the performance of our power optimization
and the parameters we use in the optimization, including
the sliding window (w) and the optimization interval (τ ). In
addition, we will use different types of applications to evaluate
this approach.
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