
Increasing the Efficiency of GPU Bitmap Index
Query Processing

Brandon Tran1, Brennan Schaffner1, Jason Sawin1, Joseph M. Myre1, and
David Chiu2

1 Department of Computer and Information Sciences
University of St. Thomas, St. Paul, MN, USA

jason.sawin@stthomas.edu
2 Department of Mathematics and Computer Science,

University of Puget Sound, Tacoma, WA, USA

Abstract. Once exotic, computational accelerators are now commonly
available in many computing systems. Graphics processing units (GPUs)
are perhaps the most frequently encountered computational accelerators.
Recent work has shown that GPUs are beneficial when analyzing massive
data sets. Specifically related to this study, it has been demonstrated that
GPUs can significantly reduce the query processing time of database
bitmap index queries. Bitmap indices are typically used for large, read-
only data sets and are often compressed using some form of hybrid run-
length compression.
In this paper, we present three GPU algorithm enhancement strategies
for executing queries of bitmap indices compressed using Word Aligned
Hybrid compression: 1) data structure reuse 2) metadata creation with
various type alignment and 3) a preallocated memory pool. The data
structure reuse greatly reduces the number of costly memory system
calls. The use of metadata exploits the immutable nature of bitmaps to
pre-calculate and store necessary intermediate processing results. This
metadata reduces the number of required query-time processing steps.
Preallocating a memory pool can reduce or entirely remove the over-
head of memory operations during query processing. Our empirical study
showed that performing a combination of these strategies can achieve
33× to 113× speedup over the unenhanced implementation.
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1 Introduction

Modern companies rely on big data to drive their business decisions [9, 11, 18].
A prime example of the new corporate reliance on data is Starbucks, which uses
big data to determine where to open stores, target customer recommendations,
and menu updates [17]. The coffee company even uses weather data to adjust its
digital advertisement copy [5]. To meet this need, companies are collecting as-
tounding amounts of data. The shipping company UPS stores over 16 petabytes
of data to meet their business needs [9]. Of course, large repositories of data
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are only useful if they can be analyzed in a timely and efficient manner. In this
paper we present techniques that take advantage of synergies between hardware
and software to speed up the analysis of data.

Indexing is one of the commonly-used software techniques to aid in the ef-
ficient retrieval of data. A bitmap index is a binary matrix that approximates
the underlying data. They are regularly used to increase query-processing effi-
ciency in data warehouses and scientific data. It has been shown that bitmap
indices are efficient for some of the most common query types: point, range,
joins, and aggregate queries. They can also perform better than other index-
ing schemes like B-trees [26]. One of the main advantages of bitmap indices is
that they can be queried using hardware-enabled bitwise operators. Addition-
ally, there is a significant body of work that explores methods of compressing
sparse bitmap indices [6, 8, 10, 12, 22, 24]. The focus of most compression work
is on various forms of hybrid run-length encoding schemes. These schemes not
only achieve substantial compression, but the compressed indices they gener-
ate can be queried directly, bypassing the overhead of decompression. One such
commonly used compression scheme is Word Aligned Hybrid (WAH) [24]. To
improve query processing the WAH scheme compresses data to align with CPU
word size.

One of the oft-cited shortcomings of bitmap indices is their static nature.
Once a bitmap is compressed, there is no easy method to update or delete
tuples in the index. For this reason, bitmap indices are most commonly used for
read-only data sets. However, the immutable nature of bitmaps can be exploited
to increase the efficiency of query algorithms. Specifically, as bitmap indices are
not often updated, it is relatively cheap to build and maintain metadata that
can be used to aid in query processing. Additionally, static data structures can
be preallocated to reduce query processing overhead.

Meanwhile, recent work has shown how graphics processing units (GPUs) can
exploit data-level parallelism inherent in bitmap indices to significantly reduce
query processing time. GPUs are massively-parallel computational accelerators
that are now standard augmentations to many computing systems. Previously,
Andrezejewski and Wrembel [1] proposed GPU-WAH, a system that processes
WAH compressed bitmap indices on the GPU. To fully realize the data parallel
potential inherent in bitmaps, GPU-WAH must first decompress the bitmap.
Nelson et al. extended GPU-WAH so that it could process range queries [19].
Nelson et al. demonstrated that tailoring the range query algorithm to the unique
GPU memory architecture can produce significant improvements (an average
speedup of 1.48× over the naive GPU approach and 30.22× over a parallel CPU
algorithm).

In this paper, we explore techniques that use metadata, data structure reuse
and preallocation tailored to speed up processing WAH range queries on GPUs.

The specific contributions of this paper are:

– We describe how reusing data structures in GPU-WAH decompression algo-
rithm can reduce the number of synchronized memory calls by over 50%.
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– We present a tiered investigation of ways to incorporate precompiled meta-
data into the processing of WAH queries on the GPU. Each successive tier
reduces the amount of work performed by the GPU-WAH decompression
algorithm but increases the memory overhead. Additionally, we explore how
data type selection can align our algorithms to the architecture of the GPU.

– We present a technique that exploits the static nature of bitmap indices to
create a fixed size memory pool. The pool is used to avoid all synchronous
dynamic memory allocation at query time.

– We present an empirical study of our proposed enhancements to the GPU-
WAH decompression algorithm applied to both real and synthetic data sets.
Our experimental results show that an implementation using both metadata
and a static memory pool can achieve an average speedup of 75.43× over an
unenhanced version of GPU-WAH.

The remainder of the paper is organized as follows. In Section 2, we provide
an overview of bitmap indices and WAH compression. Section 3 describes a
procedure for executing WAH range queries on the GPU. Section 4 describes our
enhancement strategies. We present our methodology in Section 5, our results in
Section 6 and discuss the results in Section 7. We briefly describe related works
a in Section 8. We conclude and present future work in Section 9.

2 Bitmap Indices and WAH Compression

In this section, we describe the creation of bitmap indices and the WAH compres-
sion algorithm. A bitmap index is created by discretizing a relation’s attribute
values into bins that represent distinct values or value-ranges. Table 1 shows a

Table 1. Example relation (left) and a corresponding bitmap (right).

Stocks

Symbol Price

GE 11.27
WFC 54.46
M 15.32
DIS 151.58
V 184.51
CVX 117.13

Symbol Bins Price Bins

s0 s1 s2 s3 s4 s5 p0 p1 p2 p3
1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 1 0

relation and a corresponding bitmap index. The table above shows a possible
bitmap for the Stocks relation to its left. The si columns in the bitmap are
the bins used to represent the Symbol attribute. As stock symbols are distinct
values, each value is assigned a bin (e.g., s0 represents the value GE, s1 represents
WFC, and so on). The pj bins represent ranges of values into which Price values
can fall. p0 represents the range [0, 50), p1 denotes [50, 100), p2 is [100, 150), and
p3 represents [150,∞).

Consider the first tuple in the Stocks relation (Table 1). This tuple’s Symbol
value is GE, and thus in the bitmap a 1 is placed in s0 and all other s bins are
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set to 0. The Price value is 11.27. This value falls into the [0, 50) range, so a 1
is assigned to the p0 bin, and all other p bins get 0.

The binary representation of a bitmap index means that hardware primitive
bitwise operations can be used to process queries. For example, consider the
following query: SELECT * FROM Stocks WHERE Price>60;. This query can be
processed by solving p2 ∨ p2 ∨ p3 = res. Only the rows in res that contain a 1
corresponds to a tuple that should be retrieved from disk for further processing.

Original bit vector in 63 bit chunks︷ ︸︸ ︷
000000000000000000101100000100000000001000111010010000000000101
000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000

(a) Uncompressed bit vector (252 bits)

64 bit WAH literal atom︷ ︸︸ ︷
0|000000000000000000101100000100000000001000111010010000000000101

64 bit WAH fill atom︷ ︸︸ ︷
1|0|00000000000000000000000000000000000000000000000000000000000011

(b) WAH compressed bit vector

Fig. 1. An example of WAH Compression.

WAH compression operates on stand-alone bitmap bins (which are also re-
ferred to as bit vectors). An example WAH compression of 252-bits is shown in
Figures 1(a) and 1(b). Assuming a 64-bit architecture, WAH clusters a bit vector
into consecutive (system word length)−1 (or 63) bit “chunks.” In Figure 1(a) the
first chunk is heterogeneous and the remaining 3 chunks are homogeneous.

WAH then encodes each chunk into system word sized (64-bit) atoms. Het-
erogeneous chunks are encoded into literal atoms of the form (flag, lit), where
the most-significant-bit (MSB), or flag, is set to zero to indicate a literal. The
remaining 63-bits record the original heterogeneous chunk from the bit vector.
The first chunk in Figure 1(a) is heterogeneous and encoded into a literal atom.

Homogeneous chunks are encoded as fill atoms of the form (flag, val, len),
where the MSB (flag) is set to 1 to indicate a fill and the second-MSB (val)
records the value of the homogeneous sequence of bits. The remaining 62-bits
(len) record the run length of identical chunks in the original bit vector. The
last three chunks in Figure 1(a) are homogeneous and are encoded into a fill
atom, where the val bit is set to 0 and the len field is set to 3 (as there are three
consecutive repetitions of the homogeneous chunk).

3 GPU Processing of WAH Range Queries

WAH compressed bitmaps can be queried directly without the need for decom-
pression. It has been shown that the system word alignment used by WAH can
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lead to faster querying than other compression schemes [23]. However, this ap-
proach is tailored to the CPU. Previous work [19] has shown that GPUs can
process range queries even faster.

Figure 2 illustrates the execution steps used in [19] to process a range query on
the GPU. Initially, the compressed bit vectors are stored on the GPU. When the
GPU receives a query, the required bit vectors are sent to the Decompressor.
The decompressed columns are then sent to the Query Engine where the query
is processed, and the result is sent to the CPU.

Fig. 2. Main components used to process WAH range queries on a GPU.

Using NVIDIA’s compute unified device architecture (CUDA), Nelson et
al. [19] presented three parallel reduction-based methods for the query engine:
column-oriented access (COA), row-oriented access (ROA), and a hybrid ap-
proach. COA performs the reduction on columns, and ROA performs the reduc-
tion across single rows. In the hybrid approach, GPU threads are grouped into
blocks, and thread blocks are tiled into grids to cover the query data. The blocks
then perform a reduction on their data. This approach makes the most efficient
use of the GPU memory system. Specifically, it utilizes both the coalesced mem-
ory accesses of COA and the use of shared memory for processing along rows of
ROA; the hybrid was found to be the fastest method in their experimental study.
For the remainder of the paper, we will only be considering the hybrid approach
for the query engine though our improvements would benefit all approaches.

The work of this paper focuses on the decompressor component of the above
approach. Algorithm 1 presents a procedure for the decompressor unit. It was
designed by Andrezejewski and Wrembel [1] and modified in [19] to decompress
multiple columns in parallel. The input to the algorithm is a compressed bit
vector, CompData, the size of the compressed data, CSize, and the size of
the decompressed data, DSize. The output is the corresponding decompressed
bit vector, DecompData. The algorithm itself comprises five stages; the stages
execute sequentially, but the work within stages is processed in parallel.

Stage 1 (lines 2 - 9) generates an array DecompSizes which has the same
number of elements as CompData. At the end of Stage 1, each element in
DecompSizes will hold the number of words being represented by the atom
with the same index in CompData. This is accomplished by creating a thread
for each atom in CompData. If an atom is a literal, its thread assigns 1 to
the appropriate index in DecompSizes (line 5). If the atom is a fill, the thread
assigns the number of words compressed by the atom (line 7).
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Algorithm 1 Parallel decompression of compressed data

1: procedure Decomp(Compressed BitV ector CompData,CSize,DSize)

2: ************* STAGE 1 *************
3: for i← 0 to CSize− 1 in parallel do
4: if CompData(i)63 = 0b then
5: DecompSizes[i]← 1
6: else
7: DecompSizes[i]← the value of len encoded on bits CompData(i)0→61

8: end if
9: end for

10: ************* STAGE 2 *************
11: StartingPoints← exclusive scan on the array DecompSizes

12: ************* STAGE 3 *************
13: EndPoints is an array of size DSize filled with zeroes
14: for i← 1 to CSize− 1 in parallel do
15: EndPoints[StartingPoints[i]− 1]← 1
16: end for

17: ************* STAGE 4 *************
18: WordIndex← exclusive scan on the array EndPoints

19: ************* STAGE 5 *************
20: for i← 0 to DSize− 1 in parallel do
21: tempWord← CompData[WordIndex[i]]
22: if tempWord63 = 0b then
23: DecompData[i]← tempWord
24: else
25: if tempWord62 = 0b then
26: DecompData[i]← 064

27: else
28: DecompData[i]← 01 + 163

29: end if
30: end if
31: end for

32: return DecompData . contains a decompressed bit vector of CompData
33: end procedure

Stage 2 (line 11) executes an exclusive scan (parallel element summations)
on DecompSizes storing the results in StartingPoints . StartingPoints[i] con-
tains the total number of decompressed words compressed into CompData[0] to
CompData[i− 1], inclusive. StartingPoints[i] ∗ 63 is the number of the bitmap
row first represented in CompData[i].

Stage 3 (lines 13 - 16) creates an array of zeros, EndPoints. The length of
EndPoints equals the number of words in the decompressed data. A 1 is assigned
to EndPoints at the location of StartingPoints[i]−1 for i < |StartingPoints|.
In essence, each 1 in EndPoints represents where a heterogeneous chunk was
found in the decompressed data by the WAH compression algorithm. Note that
each element of StartingPoints can be processed in parallel.
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Stage 4 (line 18) performs an exclusive scan over EndPoints storing the re-
sult in WordIndex. WordIndex[i] provides the index to the atom in CompData
that contains the information for the ith decompressed word.

Stage 5 (lines 20 - 31) contains the final for-loop, which represents a parallel
processing of every element of WordIndex. For each element in WordIndex,
the associated atom is retrieved from CompData, and its type is checked. If
CompData[WordIndex[i]] is a WAH literal atom (MSB is a zero), then it is
placed directly into DecompData[i]. Otherwise, CompData[WordIndex[i]] must
be a fill atom. If it is a fill of zeroes (second MSB is a zero), then 64 zeroes are
assigned into DecompData[i]. If it is a fill of ones, a word consisting of 1 zero
(to account for the flag bit) and 63 ones is assigned to DecompData[i]. The
resulting DecompData is the fully decompressed bitmap.

4 Memory Use Strategies

We explored memory-focused strategies to accelerate GPU query processing:
1) data structure reuse, 2) metadata storage, and 3) employing a preallocated
memory pool. Descriptions of each strategy are provided below.

(a) Baseline (b) Data reuse (c) Stage 2
Metadata

(d) Stage 4
Metadata

(e) Memory
pool

Fig. 3. Various implementations of a GPU-WAH system specialized for range queries.

Figure 3(a) depicts the steps required for our baseline implementation of
Algorithm 1. As shown, this implementation requires five cudaMalloc() calls
and four cudaFree() calls in the decompressor and an additional cudaFree()
after the query engine has finished. Each cudaMalloc() is allocating an array
needed in the following algorithmic stage. The CUDA library only supports syn-
chronous memory allocation and deallocation. Synchronous memory operations
combined with data dependencies in Algorithm 1 make memory operations a
limiting factor for decompression.
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Data structure reuse- We can reduce the number of CUDA memory calls
by reusing data structures. The arrays created in Stage 1 and Stage 2 of Al-
gorithm 1, DecompSizes and StartingPoints, are both the length of the com-
pressed data. By performing an in-place exclusive scan on DecompSizes, mean-
ing the results of the scan are saved back to DecompSizes, we no longer need to
create StartingPoints. Similarly, we can perform an in-place scan on EndPoints
in Stage 4. Moreover, we can reuse EndPoints for DecompData. After the data
is read from EndPoints (line 21), the results of the writes in line 26 and line 28
can be written back to EndPoints without loss of data. Figure 3(b) shows the
steps of implementation with data structure reuse. As shown, it only requires
two calls to cudaMalloc(), one before Stage 1 and another before Stage 2. It
requires a call to cudaFree() after Stage 3 is finished with DecompSizes and
the final cudaFree() after the query engine has finished with the decompressed
data saved in EndPoints. By careful reuse of data structures, we reduce the
number of CUDA memory calls from 10 to 4.

Storing Metadata- Further memory management and even some process-
ing stages can be skipped by pre-generating intermediate results of the decom-
pression algorithm (Algorithm 1) and storing them as metadata. For example,
the only information from Stage 1 and Stage 2 used in the remainder of the
algorithm is stored in StartingPoints. By generating StartingPoints prior to
query-time and storing the results as Stage 2 metadata both Stage 1 and 2

of Algorithm 1 can be skipped. Figure 3(c) depicts an extension of our data
structures reuse system enhanced with Stage 2 metadata. At query-time, the
metadata is stored statically in memory on the GPU, so there is no need to
allocate memory for StartingPoints. By injecting the stored information, the
decompression algorithm can be started at Stage 3. As shown, this approach
still requires a call to cudaMalloc() to create the array that will eventually hold
the decompressed bit vector. That memory will need to be freed after the query
has been processed.

Using a metadata approach, it is possible to skip all but the final stage of
the decompression algorithm. The only information that flows from Stage 4

to Stage 5 is stored in WordIndex which can be pre-computed and stored.
Figure 3(d) shows a system that uses Stage 4 metadata. Notice that it skips
Stages 1-4. However, it still requires a memory allocation for Stage 5 as the
data structure reuse system saved the final decompressed data in the original
WordIndex array. Now WordIndex is stored as metadata and overwriting it
would slow the performance of subsequent queries as they would no longer have
access to stored information. The cudaMalloc() call in 3(d) is allocating memory
for a structure that will hold the fully decompressed data. This memory will need
to be freed after the query is completed.

Any speedup realized by our metadata approaches is achieved at the cost of
a larger memory footprint. To reduce the space requirements of our implemen-
tation, we explore the effects of using 32-bit and 64-bit integer types to store
Stage 2 and Stage 4 metadata. Our version of the decompression algorithm
expected the WAH compression to be aligned with a 64-bit CPU system word
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size. However, Stage 2 metadata contains the total number of decompressed
words compressed from CompData[0] to CompData[i − 1], for some non-zero
index i. The largest possible element is equal to the number of system words
comprising the decompressed bit vector. Hence, for decompressed bitmaps con-
taining less than (232−1)×64 rows Stage 2 metadata can be a 32-bit datatype.
Essentially, this type-size reduction would make the Stage 2 metadata half the
size of the compressed bitmap.

For each decompressed word w in a bit vector, Stage 4 metadata stores an
index into CompData where w is represented in compressed format. In essence,
Stage 4 metadata maps decompressed words to their compressed representa-
tions. As long as the compressed bit vector does not contain more than (232−1)
atoms, a 32-bit data type can be used for Stage 4 metadata. This type re-
duction makes Stage 4 metadata half the size of the decompressed data. Note
that storing Stage 4 metadata using 64-bit integer types would require the
same memory footprint as the fully decompressed bitmap. In this case, it would
be advantageous to store just the decompress bitmap and circumvent the entire
decompression routine.

Memory Pool- A common approach to avoid the overhead of cudaMalloc()
and cudaFree() is to create a preallocated static memory pool (e.g., [14,21,25]).
We create a memory pool tailored to the bitmap that is stored on the GPU. A
hashing function maps thread-ids to positions in preallocated arrays. The arrays
are sized to accommodate a decompressed bit vector of the bitmap stored on
the GPU. Threads lock their portion of the array during processing. The array
is released back to the pool at the end of query processing. All available GPU
memory that is not being used to store the bitmap and metadata is dedicated
to the memory pool. This design will lead to a query failure if the memory re-
quirements are too large. This limitation motivates future work that will explore
methods for distributing massive indices across multiple GPUs.

Figure 3(e) shows the design of our fully enhanced GPU-WAH range query
system. The use of a memory pool removes the need to invoke CUDA memory
calls. As shown, the memory pool can be used in conjunction with both of our
metadata strategies to circumvent stages of the decompression algorithm. It can
also be used as a standalone solution.

5 Experiments

In this section, we describe the configuration of our testing environment and
the process that was used to generate our results. All testing was executed on
a machine running Ubuntu 16.04.5 LTS, equipped with dual 8-core Intel Xeon
E5-2609 v4 CPUs (each at 1.70 GHz) and 322 GB of RAM. The CPU side of
the system was written in C++ and compiled with GCC v5.4.0. The GPU com-
ponents were developed using CUDA v9.0.176 and run on an NVIDIA GeForce
GTX 1080 with 8 GB of memory.

We used the following data sets for evaluation. They are representative of the
type of read-only applications (e.g., scientific) that benefit from bitmap indexing.
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– BPA – contains measurements reported from 20 synchrophasors (measures
magnitude and phase of AC waveform) deployed by Bonneville Power Ad-
ministration over the Pacific Northwest power grid [4]. Data from each syn-
chrophasors was collected over approximately one month. The data arrived
at a rate of 60 measurements per second and was discretized into 1367 bins.
We use a 7, 273, 800 row subset of the measured data.

– linkage – contains anonymous records from the Epidemiological Cancer
Registry regarding the German state of North Rhine-Westphalia [20]. The
data set contains 5, 749, 132 rows and 12 attributes. The 12 attributes were
discretized into 130 bins.

– kddcup – contains data obtained from the 1999 Knowledge Discovery and
Data Mining competition. These data describe network flow traffic. The set
contains 4, 898, 431 rows and 42 attributes [15]. Continuous attributes were
discretized into 25 bins using Lloyd’s Algorithm [16], resulting in 475 bins.

– Zipf – contains data generated using a Zipf distribution. This is the only
synthetic data set on which we tested. A Zipf distribution represents a clus-
tered approach to discretization, which can capture the skew of dense data
in a bitmap. With the Zipf distribution generator, the probability of each
bit being assigned to 1 is: P (k, n, skew) = (1/kskew)/

∑n
i=1(1/iskew) where

n is the number of bins determined by cardinality, k is their rank (bin num-
ber: 1 to n), and the parameter skew characterizes the exponential skew
of the distribution. Increasing skew increases the likelihood of assigning 1s
to bins with lower rank (lower values of k) and decreases the likelihood of
assigning 1s to bins with higher rank. We set n = 10 and skew = 2 for
10 attributes, which generated a data set containing 100 bins (i.e., ten at-
tributes discretized into ten bins each) and 32 million rows. This is the same
synthetic data set used in Nelson et al. [19].

We tested multiple configurations of additional enhancement strategies for
query execution. These configurations are comprised of three classes of options:

1. Data structure reuse
2. Metadata: None, 32-bit Stage 2, 64-bit Stage 2, 32-bit Stage 4, and

fully decompressed columns.
3. Memory pool usage: used or unused.

We tested all valid combinations of these options on each of the four data sets.
Due to the mutually exclusive nature of the metadata storage options, this results
in 10 augmented configurations plus the baseline approach.

All tests used range queries of sizes 64 columns. To obtain representative
execution times for each query configuration we repeated each test 6 times. The
execution time of the first test is discarded to remove transient effects, and
the arithmetic mean of the remaining 5 execution times is recorded. We used
the average to calculate our performance comparison metric, speedup = tbase/t,
where tbase is the execution time of the baseline for comparison and t is the
execution time of the test of interest. The baseline we used for all speedup
calculations was the implementation of the decompression algorithm from [19]
(a slightly modified version of the algorithm presented in [1]).
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Fig. 4. Metadata memory space require-
ments relative to the baseline approach
storing only compressed bitmaps. Note, the
vertical axis is logarithmic.

Here we present the results obtained
from the experiments described in the
previous section. We first discuss the
impact of memory requirements. We
then present results for data structure
reuse, metadata, data type size, and
memory pool strategies that were de-
scribed in Section 4.

The performance provided by
some of the techniques in this pa-
per comes at the cost of additional
memory costs, which are shown in
Figure 4. Relative to standard stor-
age requirements, the storage require-
ments when using 32-bit Stage 2

metadata, 64-bit Stage 2 metadata,
and 32-bit Stage 4 metadata, are
1.5×, 2×, and an average of 12.8×,
respectively.
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Fig. 5. Speedup provided by data
structure reuse.

The speedup provided by reuse of
data structures to eliminate memory op-
erations is shown in Figure 5. Eliminat-
ing the overhead of many memory oper-
ations enhanced performance by a max-
imum of 8.53× and 5.43×, on average.
The kddcup and BPA data sets exhibited
greater speedup than the linkage and Zipf
datasets due to the relative compressibil-
ity of these data sets and its effect on the
decompression routine.

Performance enhancement provided
by the use of a memory pool is shown
in Figure 6(a). This enhancement consis-
tently provided an average of 24.4× speedup across all databases and a maximum
speedup of 37.0×.

Incorporating metadata also provided consistent results as can been seen in
Figure 6(b). Using Stage 2 metadata provided an average of 15.1× speedup.
Stage 4 metadata is more beneficial with an average of 20.5× speedup.

Varying data type size yielded negligible performance enhancement. When
a memory pool was not used, as shown in Figure 6(b), there was no observable
performance difference between 32-bit and 64-bit data types. On average, their
separation was less than 0.234× speedup. When a memory pool was used, as
shown in Figure 6(c), there was a performance boost when using 32-bit data
types with an average improvement of 9.24× over 64-bit types.
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sizes, and a memory pool

Fig. 6. Shown are performance results for
a) memory pool usage, b) different meta-
data strategies and data type sizes, and c)
different metadata strategies, data type
sizes, and a memory pool. The dashed
horizontal line indicates a speedup of 1.
Figures b) and c) share a legend.

Using a combination of metadata, data type size, and memory pool tech-
niques produced the greatest performance benefit, as seen in Figure 6(c). Across
all databases, using Stage 2 metadata and a memory pool provided an average
37.7× speedup and a maximum of 58.8× speedup. Using Stage 4 metadata

and a memory pool provided an average 113× speedup and a maximum of 166×
speedup.

7 Discussion of Results

The performance provided by data reuse is dependant on the compressibility of
the data set. Data sets with greater compressibility exhibit stronger performance
relative to those with less compressibility. This is because data sets with less
compressibility incur more global memory accesses on the GPU.

Storing the results of the first exclusive scan as 32-bit metadata instead of 64-
bit not only saved storage space but also provided faster execution times (23.4%
faster, on average). On NVIDIA GPUs, 32-bit integer operations are faster than
64-bit because the integer ALUs are natively 32-bits. 64-bit operations are per-
formed using combinations of 32-bit operations.

When combining metadata and memory pool strategies, the attained speedup
was greater than the sum of the speedup of each individual strategy. When
only using metadata, the final stage can not begin until the necessary memory
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is allocated. When only using a memory pool, the final stage can not begin
until the subsequent stage is completed. Combining the methods removes both
bottlenecks and allows Stage 5 to execute almost immediately.

kd
dc
up

lin
ka
ge BP

A
Zi
pf

0

100

200

300

400

500

600

700

S
p
e
e
d
u
p

Fig. 7. Speedup provided by using de-
compressed bit vectors as “metadata”.

Although it has the highest storage
cost, using fully decompressed columns
as metadata reduces execution time be-
cause the decompression routine is com-
pletely avoided. Figure 7 shows the per-
formance enhancement provided by us-
ing fully decompressed columns as “meta-
data”. This option is only reasonable for
small databases or GPUs with large stor-
age space. This strategy provided a max-
imum of 699× speedup and an average of
411× speedup.

Figure 8 shows execution profiles when
using (a) data structure reuse, (b) 32-bit
Stage 2 metadata without a memory pool, (c) 32-bit Stage 4 metadata with-
out a memory pool, (d) only a memory pool, and 32-bit Stage 2 and 32-bit
Stage 4 metadata with a memory pool in (e) and (f), respectively.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 8. A representative (albeit approximate) view of execution profiles of six iden-
tical query executions on the linkage database with varying enhancement strategy
configurations. Query execution progresses from left to right. Longer bars correspond
to longer execution times. While execution profiles for other databases exhibited slight
variations, their interpretations remained consistent.

Data structure reuse (shown in Figure 8(a)) eliminated three of five alloca-
tion/free pairs providing an average of 5.43× speedup. Profiles using Stage 2

and Stage 4 metadata are shown in Figures 8(b) and 8(c), respectively. Both
provide a noticeable reduction in execution time as each eliminate a memory al-
location and free pair. The major cost of memory operations remains a dominant
factor so the difference between Stage 2 and Stage 4 metadata use is limited.



14 B. Tran et al.

The profile when using only a memory pool is shown in Figure 8(d). The
memory pool removes the overhead of memory operations providing a greater
reduction in execution time than pure metadata strategies. Strategies combining
a memory pool with Stage 2 or Stage 4 metadata are shown in Figures 8(e)
and 8(f), respectively. These combination strategies provide the benefits of both
strategies: short-circuiting to a mid-point of the decompression routine and re-
moving the overhead of GPU memory operations.

8 Related Work

Our work focuses on efficient GPU decompression and querying of WAH com-
pressed bitmaps. There are many other hybrid run-length compression schemes
designed specifically for bitmap indices. One of the earliest was Byte-aligned
Bitmap Compression (BBC) [3]. The smaller alignment can achieve better com-
pression but at the expense of query speed [23]. Other compression schemes have
employed variable alignment length [8,13]. These approaches try to balance the
trade-offs between compressing shorter runs and increasing query processing
time. Others use word alignment but embed metadata in fill atoms that improve
compression or query speed [7, 10, 12, 22]. These techniques were developed for
execution on the CPU, though they could be ported to the GPU by altering the
decompressor component of the GPU system described above. We believe that
many, if not all, of these compression techniques on the GPU would benefit from
a variation of our metadata and memory pool enhancements.

To the best of our knowledge, we are first to use metadata to efficiently
decompress WAH bitmap indices on the GPU. However, other work has explored
the benefits of memory pools on GPU in a variety of applications. For example,
Hou et al. [14] used a specialized memory pool to create kd-trees in the GPU.
Their approach allowed them to process larger scenes on the GPU than previous
work. Wang et al. [21] used a preallocated memory pool to reduce the overhead
of large tensor allocations/deallocations. Their approach produced speedups of
1.12× to 1.77× over the use of cudaMalloc() and cudaFree(). The work of
Simin et al. [25] is similar to our work in that they use a memory pool to
increase the query processing of R-trees on GPU’s. We were unable to find any
work that used a GPU memory pool specifically designed for use with bitmap
indices.

As mentioned above, our work extends the works of Andrzejewski and Wrem-
bel [1,2] and Nelson et al. [19]. Andrzejewski and Wrembel introduced WAH and
PLWAH [10] compression and decompression algorithms for GPUs as well as
techniques to apply bitwise operations to pairs of bit vectors. Their decompres-
sion algorithm details a parallel approach for a decompressing a single WAH or
PLWAH compressed bit vector. Nelson et al. modified Andrzejewski and Wrem-
bel’s decompression algorithm to apply it to multiple bit vectors in parallel.
They then presented multiple algorithms for executing bitmap range queries on
the GPU. Our experimental study used their most efficient range query imple-
mentation. As the work in this paper improves the efficiency of WAH bitmap de-
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compression on the GPU, it represents a significant enhancement to approaches
presented by Andrzejewski and Wrembel’s and Nelson et al.

9 Conclusion and Future Works

In this paper, we present multiple techniques for accelerating WAH range queries
on GPUs: data structure reuse, storing metadata, and incorporating a memory
pool. These methods focus on reducing memory operations or removing repeated
decompression work. These techniques take advantage of the static nature of
bitmap indexing schemes and the inherent parallelism of range queries.

We conducted an empirical study comparing these acceleration strategies to
a baseline GPU implementation. The results of our study showed that the data
reuse, metadata, and memory pool strategies provided average speedups of 5.4×,
17.8×, and 24.4×, respectively. Combining these techniques provided an average
of 75.4× speedup. We also found that storing the entire bitmaps as accessible
metadata on the GPU resulted in an average speedup of 411× by eliminating the
need for decompression altogether. This option is only feasible for configurations
with small databases or GPUs with large storage space.

In future work, comparing energy consumption of the above approaches may
prove interesting. We would also like to investigate executing WAH queries using
multiple GPUs. Using multiple GPUs would provide additional parallelism and
storage capabilities. Furthermore, since WAH compression is designed for CPU
style processing, future studies could investigate new compression schemes that
are potentially better fit for the GPU architecture.
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