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ABSTRACT
Indexing is a fundamental mechanism for efficient data access. Re-
cently, we proposed the Variable-Aligned Length (VAL) bitmap in-
dex encoding framework, which generalizes the commonly used
word-aligned compression techniques. VAL presented a variable-
aligned compression framework, which allows columns of a bitmap
to be compressed using different encoding lengths. This flexibil-
ity creates a tunable compression that balances the trade-off be-
tween space and query processing time. The variable format of
VAL presents several unique opportunities for query optimization.

In this paper we explore multiple algorithms to optimize both
point queries and range queries in VAL. In particular, we propose
a dynamic encoding-length translation heuristic to process point
queries. For range queries, we propose several column orderings
based on the bitmap’s metadata: largest segment length first (lsf),
column size (size), and weighted size (ws). In our empirical study
over both real and synthetic data sets, we show that our dynamic
translation selection scheme produces query execution times only
3.5% below the optimal. We also found that the weighted size
column ordering significantly and consistently out-performs other
ordering techniques. Finally, we show that algorithms scale to data
sets that are row-ordered.

Categories and Subject Descriptors
H.2.4 [Systems]: Query Processing

Keywords
bitmap indices, bitmap compression, query execution

1. INTRODUCTION
Popular applications including, but not limited to, web search,

online shopping, and social media, are increasingly data-intensive,
and billions of users rely on fast interactions with massive data
stores. To offer high-performing data access and query processing
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time, such storage systems rely on advanced indexing techniques.
One indexing scheme used for read-only databases, the bitmap in-
dex [1,2], has seen a surge in recent popularity, due to the increased
prevalence and pressure of having to manage Big Data. As a re-
sult, bitmaps are now found in various scientific and business intel-
ligence applications [3,4,5,6,7]. This rise in bitmap’s popularity is
spurred on by two of its characteristics. First, bitmaps reduce query
execution down to simple logical operations, which are hardware-
supported and fast. Second, bitmaps’ sparsity is amenable to com-
pression, and a number of encodings allow logical operations to be
applied across bitmaps in their compressed state.

A bitmap index is a coarse representation of a relational table.
In general, attributes are divided into distinct value-ranges, known
as bins. For each attribute in a tuple, a 1-bit is placed in the col-
umn that represents its binned value. All other columns that do not
represent possible values for that attribute are given a 0-bit. Ta-
ble 1 presents an example of a simple relational table (left) and a
possible corresponding bitmap (right). Each of the unique Name
values is represented as a bin. Salary is a continuous attribute, so
it is discretized into bins that represent ranges. To answer a query
that seeks to retrieve tuples that have salaries in the range $10K
to $100K, we perform a bitwise OR between the 5th and 6th bins
(from the left). The rows with 1-bits set in the resulting vector cor-
respond to the candidate tuples on disk.

Depending on the size of the relation being indexed, and the car-
dinality of bins used to discretize the attributes, bitmaps can easily
out-grow core memory. Fortunately, many compression techniques
have been developed that are uniquely suited for bitmaps. Most
of these techniques are variations of a hybrid run-length encoding
scheme, which represents each bin using a mix of literal and fill
atoms. A literal atom encodes a sequence of bits exactly as they
appear in their uncompressed form. The fill atoms compactly en-
code sequences, or runs, of homogeneous bits. For example, in the
following two atoms (L, 1000100)(F, 1, 110000), the L-bit and
F -bit designate whether the atom is a literal or a fill, respectively.
The fill atom contains a value bit, in this case 1, that encodes the
value of the homogeneous bits being compressed. The value bit is
followed by the length of the run, 1100002 = 4810.

Several modern bitmap compression schemes are variants of a
word-aligned encoding, the most popular being Word Aligned Hy-
brid (WAH) codes [8]. For instance, on a w = 64-bit machine,
these word-aligned schemes decompose a bitmap column into seg-
ments of s = w− 1 = 63 bits and forms fills of homogeneous seg-
ments. A 64-bit fill atom is then (flag, v, len), where flag = 1
signifies a fill atom, v is the fill-value bit, and len is the run-



Name Salary
Kat 1250 K
Zac 6 K
Ben 125 K
Kat 12 K
Zac 275 K

Kat Zac Ben [0,10K) [10K,100K) [100K,250K) [250K,1000K) [1000K,∞)
1 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0

Table 1: Example relation (left) and a corresponding bitmap (right)

length of consecutive segments. Similarly, 64-bit literal atoms are
(flag, v), where flag = 0 denotes a literal and v is the s-bit ver-
batim segment. Intuitively, because word-aligned schemes imposes
a fixed segment length of s = w−1, it can efficiently compress ex-
tremely long runs of segments. It can also be seen that shorter runs
can be represented more efficiently given smaller segment lengths.

To address segment size variability, we recently proposed the
Variable Aligned Length (VAL) encoding scheme [9]. Unlike WAH,
VAL enables varying segment lengths, so as long as they are multiply-
aligned. For example, VAL might compress a noisier column by
separating it into segments of length (s = 15) to efficiently rep-
resent shorter runs. A sparse column could be compressed using
segment length s = 60 to emulate word-aligned encoding. We de-
veloped systematic methods to process queries between columns
encoded using different segment lengths.

A particular challenge intrinsic to the VAL’s query execution al-
gorithm is to reconcile different segment lengths when applying a
logical operation between two columns Vi and Vj . For instance,
if we assume Vi.seglen = 15 and Vj .seglen = 60, it is unclear
whether it is more efficient to decode Vi up to a single 60-bit seg-
ment, or conversely, decode Vj down to four 15-bit segments, be-
fore applying the logical operation.

This paper explores the unique challenges and opportunities that
VAL’s variable alignment represents for efficient query execution
of point and range queries. We explore several novel range query
algorithms for VAL. This study makes the following contributions:
• We evaluate and identify the tradeoff between two distinct

segment length translation algorithms for query execution:
decode up vs. decode down. We present a metadata-driven
heuristic that can select the ideal translation algorithm with a
high rate of accuracy for point queries.
• For range query execution, we gather the columns’ metadata

(e.g., column size, segment length, etc.), which is then used
to impose a total ordering in range query processing. We
show that ordering impacts the efficiency of range query ex-
ecution in VAL for several different types of data.
• We present a nuanced experimental study that uses both real

and synthetic data sets to evaluate the effects of our ordering
on five unique range query processing algorithms. The re-
sults of this study show that a column ordering based on size
weighted by column composition is the most efficient. It also
suggests that an accumulation approach to query processing
is ideal for uniform data and a reentrant priority queue ap-
proach is better suited for skewed data.

The remainder of the paper is organized as follows. Section 2
provides an overview of the VAL bitmap compression scheme. Sec-
tion 3 presents our proposed optimizations to VAL’s range query
algorithm. Section 4 presents the results of our empirical study.
Related works are presented in Section 5. We conclude and present
future avenues for this work in Section 6.

2. VAL COMPRESSION
The popular Word-Aligned Hybrid code (WAH) excels in com-

pressing and accelerating the query processing of bitmaps contain-

101111011111111  11111111111111...1  00000000000...0  111111110000000

0110           

15x32

Uncompressed Bit Vector (1155 bits)

VAL Compressed Bit Vector (s=15) (64 bits)

101111011111111 100000000100000 111111110000000..

15 15x43 15

Figure 1: VAL Encoding Example

ing super sparse columns. In general, depending on the application
and data distribution, a bitmap can take on a spectrum of sparsity,
which may not always favor WAH. In contrast, VAL analyzes each
bit vector to be compressed, noting the bit distribution and run-
lengths, then chooses an appropriate segment length and encoding
algorithm. Like WAH, the bit vector is compressed by VAL into
atoms, which are limited by hardware constraints, but the signifi-
cant difference is that VAL can specify a segment length into which
the word is broken and encoded. These words are then compressed
using the specified compression method, determined by VAL dur-
ing the analysis of the bit vector.

Consider the example shown in Figure 1, where the segment
length is set to 15 with a word size of 64. The uncompressed
bit vector (top) is 1155 bits long. Each word in the VAL com-
pressed bit vector (bottom) will have a header of 4 bits represent-
ing whether the respective segment is a fill or a literal, reducing
some of the overhead from decoding during query execution. The
first and last segments are literals and represent the 15 verbatim
bits from the original bit vector. The middle two segments are fills
and are encoded such that the first bit is their fill bit (underlined
in the figure) and the remaining bits encode the run-length of seg-
ments contained. Here, VAL was able to compress 1155 bits down
to only a single 64 bit word. In contrast, 64-bit WAH would have
require five words, or 320 bits. It can be observed even in this sim-
ple and contrived example that VAL’s flexibility from being able to
select different segment lengths for each bit vector can improve the
compression of shorter runs.

To minimize the translation overhead, VAL only allows for seg-
ments that are multiply-aligned. For example, with alignment fac-
tor 15 and word size 64, the possible segments lengths are 15, 30,
and 60. Consider two VAL bit vectors, Am×s and Bs, encoded
using segment lengths m × s and s, respectively. The operation
Am×s ◦ Ys, where ◦ is a binary logical operator. Algorithm 1
shows the pseudocode for query processing. For each bit vector,
one physical word (currentWord) is decoded at a time (Line 1-7).
The parameterm (Line 3) indicates that the currentWord should be
decoded into blocks, representing atoms, of segment length m× s.
Given the multiply-aligned restriction on segment lengths, m is al-
ways a power a 2. The decoded currentWord contains a number
of activeBlocks. This activeBlock is tantamount to the activeWord
structure used in WAH. The currentWords are iterated over one
block at a time (Lines 8-14) and are operated together until ex-
hausted. Two fill blocks can be operated together without explicit
decompression (Lines 15-20). If one of the activeBlocks is a literal,
then the values are operated together and the number of segments



in the fill, nSegments, is decremented by 1 with each getLitValue()
call (Lines 21-23).

Algorithm 1: General Bitwise Logical Operation

Input: Bit Vector A, B: (A.segLen=m× s and B.segLen=s)
Output: Bit Vector Z: The resulting compressed bit vector

after performing the logical operation X ◦ Y
1 while A and B are not exhausted do
2 if A.currentWord is exhausted and ∃ words in A then
3 A.decodeNextWord(m);
4 end
5 if B.currentWord is exhausted and ∃ words in B then
6 B.decodeNextWord(1);
7 end
8 while A.currentWord and B.currentWord are not

exhausted do
9 if A.activeBlk.nSegments == 0 then

10 A.activeBlk = A.nextBlk();
11 end
12 if B.activeBlk.nSegments == 0 then
13 B.activeBlk = B.nextBlk();
14 end
15 if A.activeBlk.isFill() and B.activeBlk.isFill() then
16 nSegments = min(A.activeBlk.nSegments,
17 B.activeBlk.nSegments);
18 Z.addFill(A.activeBlk.fill
19 ◦ Y .activeBlk.fill, nSegments);
20 A.activeBlk.nSegments -= nSegments;
21 B.activeBlk.nSegments -= nSegments;
22 end
23 else
24 Z.addLiteral(A.activeBlk.getLitValue()
25 ◦ B.activeBlk.getLitValue());
26 end
27 end
28 end
29 return Z;

Let us focus on Lines 3 and Line 5 of the algorithm. Due to seg-
ment length variation across bit vectors, it is necessary to align the
bits appropriately before performing logical operations on them.
Given Am×s and Bs, there are two scenarios: the segment lengths
between them are the same (m = 1), or they can differ (m > 1).
In the former case, the bit vectors are already aligned, and the log-
ical operation can proceed normally. In the latter case where the
segment lengths differ (e.g., A30 and B15), the segments must be
reconciled so that they are in alignment. Here, we have a choice:
(1) the words in A30 could be split into segments of length 15. We
name this method DecodeDown. (2) Conversely, the words in B15

can be merged to form segments of length 30. We refer to this
method as DecodeUp. Note that the decision of the decoding di-
rection occurs only once, prior to running Algorithm 1, which also
defines the segment length of the result bit vector Z.

We now discuss DecodeDown (Algorithm 2) and DecodeUp (Al-
gorithm 3). When decoding down there are two cases depending on
whether the block being decoded is a fill or literal. If the block is a
fill, then the new run length is equal to:

(segLenold/segLennew)× runLengthold (1)

Recall from before that, because m is a power of 2, the Decode-
Down operation can be reduced to shifting bits to the right. Fig-
ure 2 (a) shows an example where the bits representing the num-
ber of segments represented can not translate into a single segment
when decoding down from 60 to 15. Thus, two segments are cre-
ated such that together they represent the same number of zeros in
the bit vector. A literal segment is decoded down by dividing it into
the smaller segment length and appending it onto the word. In this
case a literal with segment length 60 would be broken down with

segment length 15 into four literals.

Algorithm 2: DecodeDown()

Input: Compressed word containing blocks of length s; N :
the number of blocks in the word; m: the conversion
factor to the new segment length

Output: activeWord - VAL word containing decoded blocks
using segments of length s/m

1 for i = 1→ N do
2 activeBlk = ith block;
3 if activeBlk.isLiteral() then
4 for j = 1→ m do
5 activeWord.addLiteral(activeBlk.val >>>
6 s× (N − i));
7 end
8 end
9 else

10 activeWord.addFill(activeBlk.val >>> (s− 1),
11 activeBlk.nSegments ×m);
12 end
13 end
14 return activeWord;

Cost-wise, DecodeUp consists of more cases than DecodeDown.
There is the use of an additional data structure called the aligned-
Block which stores intermediate data such as remainder bits or par-
tial words. There are four scenarios when decoding down depend-
ing on the activeBlock and the alignedBlock values. First, con-
sider the case where the activeBlock is a fill and the alignedBlock
is empty. The activeBlock is added to the currentWord with the
number of segments being a fraction of the new segment length
with any remaining bits being appended to the alignedBlock as a
literal. The second scenario is when the activeBlock is a literal and
the alignedBlock is empty. The literal is appended to the aligned-
Block. The third scenario is when the alignedBlock is not empty
and the activeBlock is a literal. The alignedBlock is then filled with
bits from the literal in activeBlock until it is a complete segment.
The fourth and final scenario is when the alignedBlock is not empty
and the activeBlock is a fill. This is the example that is presented
in Figure 2 (b). Literals are subtracted from the fill to complete the
alignedBlock. In this example, all segments in the fill are needed
to complete the block. In the case there are remaining segments in
the activeBlock, they are added to the activeWord as a fill.

000000000000000000000000...000000000001000000000011101000

VAL (s=60)

11111111111111 00000000001111

1100    

VAL (s=15)
011111111111111 000000000001111 ……

(a) Decode Down

011011100110010111111111111111111111111111111111111111111111

0100    

VAL (s=15)
011011100110010 100000000000011 ……

0000

VAL (s=60)

011011100110010 111111111111111111111111111111111111111111111

(b) Decode Up

Figure 2: Segment Length Resolution Example



Algorithm 3: DecodeUp()

Input: Compressed word containing blocks of length s; N :
the number of blocks in the word; m: the conversion
factor to the new segment length

Output: activeWord - VAL Word containing decoded blocks
of length s×m

1 for i = 1→ N do
2 activeBlk= ith block;
3 if alignedBlk.nSegments=0 then
4 if activeBlk.isLiteral() then
5 alignedBlk.addLiteral(activeBlk.value)
6 end
7 else
8 activeWord.addFillBlock(activeBlk.fill,

activeBlk.nSegments/m);
9 store the leftover bits in alignedBlk, if any

10 end
11 end
12 else
13 if activeBlk.isLiteral() then
14 alignedBlk.addLiteral(activeBlk.value);
15 if alignedBlk.isComplete() then
16 activeWord.addLiteralBlock(alignedBlk.value)

alignedBlk.clear()
17 end
18 end
19 else
20 while alignedBlk.isNotComplete() do
21 alignedBlk.addLiteral(activeBlk.fill)

activeBlk.nSegments–
22 end
23 activeWord.addLiteralBlock(alignedBlk)

alignedBlk.clear()
activeWord.addFill(activeBlk.fill,
activeBlk.nSegments/m) store the leftover bits in
alignedBlk, if any

24 end
25 end
26 end
27 return activeWord

3. QUERY OPTIMIZATIONS
In this section, we present our proposed optimizations to VAL’s

query engine. We first discuss a heuristic for choosing a translation
method when processing queries between columns with different
segment lengths. Next, we present the various column orderings
we propose to investigate for carrying out range queries. Finally,
we discuss how the metadata can be collected at compression time
to facilitate our optimizations.

3.1 Point Queries: Single Logical Operations
For fixed-length bitmap compression algorithms such as WAH,

processing a query by applying a single logical operation is straight-
forward. The variable-length approach of VAL presents several
unique challenges. The first is translating a column compressed
with segment length s to that of a column compressed with seg-
ment length m × s, or vice versa. The previous section presented
two solutions to this problem, i.e., DecodeDown and DecodeUp.
The existence of two possible approaches for translation provides a
second challenge: when to use one translation over the other.

Accurate selection of the most efficient decoding method used to
answer a query of the form Aa ◦Bb, where ◦ is a bitwise operator,
relies on a priori knowledge of the characteristics of A and B, in-
cluding: the segment lengths a and b, the number of literal atoms,
the number of fill atoms and the length of the runs they encode. Be-
cause gathering this information at query time would require both
reading the columns into memory and completely parsing them, it

is clear that any potential gains made by selecting the most efficient
decoding method would be lost. We propose a heuristic that uses
information gathered at compression-time to estimate the efficiency
of each decoding method.

Our heuristic assumes that the efficiency of a decoding method
depends on the amount of parsing required. Since no additional
translation cost is incurred when both columns are compressed us-
ing the same segment length, we assume a < b. Calculating the
number of parses required by DecodeDown to process a query is
straightforward. Before any translation penalty is incurred, each
atom in both A and B will require one parse operation. Since B
has the larger segment length, it will require additional parsing, in-
curred by the literal atoms: each literal atom of B must be parsed
into b/a smaller atoms. B’s fill atoms will require no further pars-
ing, their run lengths are simply adjusted to reflect the new segLen.
The following formula calculates the parsing costs of processing a
query using DecodeDown:

pdown =

(
b

a
×B#lits

)
+B#fills +A#atoms (2)

where B#fills and B#lits represent the number of fill and literal
atoms in B respectively. A#atoms represents the total number of
atoms in column A.

Calculating the parsing cost required by DecodeUp is more com-
plex. Since column B has the larger segment length, it will re-
quire no further parsing past isolating its individual atoms. Column
A will incur the translation costs. Uniquely, DecodeUp actually
presents opportunities to reduce the number of parses needed for
literals in column A to under 1. This is due to VAL’s word for-
mat: all flag bits for the atoms contained in a word are placed in
the most significant bits. Thus, if a word in a column with a seg-
ment length of 15 contains only literal atoms, the 4 most significant
bits of the word would be 0000 and the remaining bits is a segment
of 60 literal bits. If this column were to be translated to segment
length 60, it may be possible to translate it without further parsing,
essentially saving four parses. Note that this is a specialization of
Algorithm 3 which is not shown in the pseudocode for brevity. It
will not be possible to realize these savings for all such “literal-
words” because a previous word might not have translated exactly
and thus the alignedBlock would contain leftover segments. In this
situation, literals would have to be parsed from a literal-word to
compensate for the leftovers.

Where the cost of parsing a literal is slightly reduced, using De-
codeUp adds a slight cost to the parsing of the fill atoms of A.
Consider a fill atom from A which encodes a run length of R. If
R mod b/a 6= 0, then the atom cannot be directly translated to
a run of b sized segments. A total of R mod b/a segments will
need to be removed from the run and treated as literals added to the
alignedBlock. We use the following formula to estimate the parsing
costs of processing a query using decodeUp:

pup = γ

(
b

a
×A#fills

)
+ τA#lits +B#atoms (3)

where 1 ≥ γ, τ ≥ (a/b). A value of 1 for γ implies that ev-
ery fill-value in A encodes run-lengths that are congruent to b/a−
1 mod b/a. This would be the worse-case and requires the most
parsing. A lower γ value implies less parsing is needed due to
fewer incongruent run-lengths. A τ value of a/b implies that all
literals in A are stored in literal-words and no additional parsing is
needed to translate them to b. A higher value implies the existence
of fewer literal-words. These parameters could be thought of as
tuning variables. Their ideal values would change from column to
column.

Our Dynamic Translation Selection heuristic selects the decode



method that is estimated to require the least number of parses using
the above formulas. We evaluate its performance in Section 4.

3.2 Range Queries
For discretized or binned columns, range queries are implemented

using the or-of-or’s form,
(A1.b1 ∨ ... ∨A1.bm) ∨ ... ∨ (An.b1 ∨ ... ∨An.bm′)

where Ai.bj denotes the jth bin of attribute i. A previous study on
WAH showed that the order in which the OR operations are applied
to the columns of a range query can impact the overall execution
time [10]. When columns A and B are OR’ed together, the result-
ing column can be at most size(A)+size(B) large. Thus, given a
series of WAH columns that generates the worse case, each succes-
sive operation produces a column that has a size equal to the sum of
the sizes of the operands. Ordering the column in increasing order
of size provides an optimal query execution time [10,11].

However, it is not obvious what effect column ordering would
have on VAL range queries, because the assumption that execu-
tion time is proportional to column size does not necessarily hold
for VAL. For example, an operation applied to two columns with
a segment length of 15 might take longer than the same operation
being applied to two columns with a segment length of 60 even
though the 60 columns might be larger. This discrepancy is due to
the increased parsing incurred by columns compressed with shorter
segment lengths. Another factor that must be considered when or-
dering columns is the translation cost associated when applying an
operation to columns with different segment lengths.

Priority
Queue

Accumulative Reentrant

dequeue()

op

dequeue()

op

...

in
te
rm
ed
.

in
te
rm
ed
.

enqueue()

Columns
Figure 3: Range Query Processing Pattern

To impose column ordering, we use a priority queue keyed on:
• Increasing Size (size): This ordering assumes that vari-

ations in processing time due to translation and parsing are
subsumed by the advantages of always trying to produce the
smallest result column.
• Weighted Size (ws): Order the columns according to size×

(60/segLen). This ordering takes into account that, for
VAL, processing time is not directly proportional to size. It
attempts to estimate the processing time by considering the
number of atoms that will be processed in each column.
• Largest Segment-Length First (lsf) - Arrange the columns

such that they will be grouped by largest segLen, within
each group, we further order by increasing size. This or-
dering minimizes the translations needed for DecodeDown
and ensures the result column is always the largest segment
length for DecodeUp.

Another design decision involves the column holding the inter-
mediate (and final) result. One way (Accumulative) is to allocate
temporary column T to hold the result column. When a column A
is dequeued, the logical operation is applied directly T ← A ◦ T .

This process continues until the priority is empty. Another pro-
cessing method (Reentrant) is to dequeue two columns A and B,
and apply the logical operation. The resulting column is then re-
enqueued into the priority queue. This is the approach taken by
Wu, et al. [10]. The Reentrant approach can, in the worst case,
require that log2 (n) temporary result columns be kept in memory,
where n is the total number of columns being queried. The tem-
porary columns that are generated by both approaches will require
the needed metadata (e.g., size) be collected while they are being
generated. We illustrate these two approaches in Figure 3.

3.3 Column Metadata
The above querying algorithms rely on a priori knowledge about

the bitmap columns being processed. We propose a process of gath-
ering column metadata at compression time and storing it on disk.
Gathering the information has a very low overhead and would not
significantly impact the time needed to compress. The size of the
metadata file will be proportional to the number of columns in a
bitmap. However, depending on the amount of data being collected,
the size of the metadata file will be insignificant when compared to
the size of the compressed bitmap. For example, our point query
algorithm requires 4 pieces of information per column: segment
length, column size, number of literal atoms, and number of run
atoms. This information can be stored in a byte for the segment
length, and 4 32-bit integers for the remaining information. Prior
to query processing, the metadata file can be read into memory and
referenced as needed. This does slightly increase the memory foot-
print. However, this is much smaller than reading all the columns
into memory, which is required to order by size without metadata.

4. EXPERIMENTAL RESULTS
In this section, we present an evaluation of our algorithms over

both real and synthetic data sets. First, we describe the experimen-
tal setup. All experiments were performed on a machine equipped
with two Intel Xeon E5-2630 processors (six 2.3 GHz cores with
hyperthreading enabled), 128 GB DDR3 RAM, running Windows
7 Professional. Each experiment was repeated six times: results
from the first run were discarded to warm the cache, and the aver-
age of the subsequent five runs are reported.

4.1 Data Preparation
We prepared both synthetic and real data sets for testing. Here,

we describe the data generation process.
Synthetic Data: We generated 8 data sets, each containing 32

million rows and 10 attributes. The attributes’ cardinalities vary be-
tween 10, 20, 40, and 80 resulting in bitmaps containing 100, 200,
400, and 800 columns, respectively. For each of these settings,
two different distributions were used: uniform and zipf. The uni-
form distribution emulates real data sets that are discretized using
equally-populated bins. In this approach, the data is binned such
that each bin contains roughly the same number of objects, thus
creating a uniform distribution of 1’s in the bitmap. The zipf dis-
tributions represent a clustered approach to discretization. In this
process, the density of data is represented in the bitmap, creating
a skewed distribution. The zipf distribution generator assigns each
bit a probability of: p(k, n, skew) = (1/kskew)/

∑n
i=1(1/i

skew)
where n is the number of elements determined by cardinality, k
is their rank, and the coefficient skew creates an exponentially
skewed distribution. The distribution is uniform when skew = 0.
We generated data sets for skew = 0 (labeled uniform) and
skew = 2 (labeled zipf2).

Real Data: For our real data experiments, we use the data set



from KDDCup’99 (labeled KDDCup), which captures network flow.
The data set contains 4, 898, 431 rows and 42 attributes1. Contin-
uous attributes were discretized into 25 bins using Lloyd’s Algo-
rithm [12]. In total, there were 475 bins/columns. We run the range
queries shown in Table 2.

All data sets were compressed using segment lengths s ∈ S =
{15, 30, 60} in round-robin fashion, i.e., A1.b1 compressed with
s = 15, A1.b2 with s = 30, A1.b3 with s = 60, etc. To query over
this data, we select the following set of columns:

{Ai.bj | j mod (|S|+ 1) = 0} ∀i, j (4)

to ensure an equal distribution of segment lengths used.

4.2 Point Queries
The first set of experiments evaluates the performance of point

query execution. We performed point queries (e.g., AND/OR op-
erations) over two randomly selected columns from our data sets.
To test the performance of DecodeUp and DecodeDown, we only
selected columns with mismatched segment lengths. We ensured
an even distribution: 1/3 of our queries were of each variety, i.e.,
15:60, 15:30, and 30:60.
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Figure 4: Point Query Execution Time

The run-settings are defined as follows: (a) All Up is when De-
codeUp() is used to execute every query, (b) All Down refers to
when DecodeDown() is used for every query, (c) Dynamic refers
to the use of our equations from Section 3.1 to inform on decod-
ing directions, and (d) Optimal is when the all decode directions
minimize execution time.

Let us first consider the results for zipf2. The results for ex-
ecuting AND and OR 5000 queries are shown in the left-hand and
right-hand side of Figure 4(a), respectively. Notice that AND queries

1http://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data

are much faster to process than OR queries. This is due to 0s, the
predominate value in skewed data, short-circuiting the logic. Our
heuristic provided the closest performance to the optimal, coming
only within 1.8% and 3.5% of the optimal for AND and OR queries,
respectively. The next closest setting, using All Up, came within
6.9% and 4.6% of the optimal. We ran 1000 queries over KDDCup,
and show the results in Figure 4(b). Our heuristic came within
17.6% and 18.2% of the optimal, while the next closest setting
(again, All Up) came within 23.8% and 23.1% of the optimal for
AND and OR queries, respectively. Although our heuristic was less
accurate over this data set, it still obtained significantly higher per-
formance than simply using a uni-directional scheme. We leave the
calibration of our heuristic for future work.

In both data sets, we can see that All Down suffers for both
types of queries. The reason for this can be seen by again in-
vestigating our formulas for estimating the parsing costs of De-
codeUp and DecodeDown (Section 3.1.) If the worse case is as-
sumed for DecodeUp, i.e., γ = τ = 1, the formula for when
DecodeDown is preferable, Pup > Pdown, can be simplified to
A#fills > B#lits. This implies that DecodeDown is only optimal
when the columns with the shorter segment length A has more fill
atoms thanB does literal atoms. This relationship was observed for
all instances where DecodeDown was more efficient. In general, it
is expected that a compressed bitmap would contain more literals
than fills. If a run is interrupted, it is likely to result in at least one
fill-literal pair. In the entire compressed version of KDDCup, there
were 750K literal atoms and only 189K fill atoms.

4.3 Range Queries
We are interested in understanding the effects of our metadata-

driven ordering algorithms for computing range queries. Recall
the ordering schemes from Section 3, where columns Ai.bj can
be ordered by size (size), largest segment length first (lsf), or
weighted size (ws). We compare these orderings with a random
column ordering (random). Each of these orderings was evaluated
under six query processing algorithms: DecodeUp Accumulation,
DecodeUp Reentrant, DecodeDown Accumulation, DecodeDown
Reentrant, Dynamic Accumulation, and Dynamic Reentrant. The
DecodeDown algorithm decodes down in translation, but due to it
performing substantially slower than both Dynamic and DecodeUp
algorithms (also observed in the Point Query evaluation), its results
are not included in the interest of space.

4.3.1 Synthetic Data
We first used range queries over: uniform and zipf2. Using

Eq. 4 for data sets with bin cardinality 10, 20, 40, and 80, we or
together 25, 50, 100, and 200 columns, respectively.

In Figure 5(a) and Figure 5(b), we show the range query exe-
cution time for DecodeUp, Accumulation and Dynamic, Accumu-
lation, respectively, over uniform data. It is interesting to note
that for both of these approaches, size generates the slowest re-
sults. This is because the smallest columns of uniform all have
a segment length of 15. Unfortunately, the size difference between
any two columns is not large. In uniform with cardinality 80,
the largest column is only 2.5× larger than the smallest column. In
contrast, the largest column in zipf2 with the same cardinality is
705× larger than the smallest column.

The size ordering favors columns with segment length of 15,
which have a few more fill atoms than other columns, but those
gains are lost after applying multiple logical OR operations. Be-
cause the result column will have a segment length of 15 until it
is queried with a column of a greater segment length, it will be
roughly the same size as the rest of the columns, but will require
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Figure 5: Execution Time (uniform)
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Figure 6: Execution Time (uniform, Row-Ordered)



much more parsing. The other three orderings all achieve approxi-
mately the same times. This is because they all have a column with
a segment length of 60 as one of their first three columns. Hence,
the result column will have a segment length of 60 for the majority
of the operations. Since the column sizes are so close, this reduc-
tion of parsing appears to be the key in query speedup. Dynamic
selection of the translation method does provide a slight advantage
for uniform offering a speedup of 1.14× for ws, the most effi-
cient ordering.

The results for DecodeUp, Reentrant applied to uniform data
are shown in Figures 5(c). The Dynamic, Reentrant results are
shown in Figure 5(d). The timings for Dynamic, Reentrant are actu-
ally slower than its Dynamic, Accumulation counterpart for
all orderings and all cardinalities. This suggests that our translation
selection heuristic is not well-suited for the Reentrant approach.
We believe this is because, even though DecodeDown might be
most efficient for two columns, it can have negative ramifications
on the remaining unprocessed columns. The consequences of a
wrong decoding choice is magnified when conducting a range query.
By examining the decoding method chosen by the Dynamic ap-
proach, we see that for the Dynamic, Reentrant, DecodeDown was
selected more times than in the Dynamic, Accumulation approach.

Several previous studies have shown that row reordering can
drastically improve compression and query performance [13,14,
15]. One popular ordering schemes is graycode, i.e., two adjacent
rows differ by only one bit. In general, graycode maximizes runs
in the first several columns of the data, and then the runs degrade
into shorter runs before deteriorating into noise in the last several
columns. To evaluate graycode’s effect on our query algorithms, we
sorted the rows using graycode ordering before compressing. The
graphs shown in Figure 6 show the execution times of our range
query algorithms on graycode sorted uniform data.

With row ordering, we see more variance in the execution times
of the column orderings. Figure 6(a) presents the results for De-
codeUp, Accumulation applied to graycode-ordered uniform. As
can be seen, ws slightly outperforms size and both are approx-
imately 1.3× to 1.5× faster than random ordering and 1.2× to
1.25× faster than lsf. This speedup is due to the size differen-
tial of the columns. Because graycode creates very long runs in
the first few columns, some of the most compressed columns have
a segment length of 60. By decoding up, the answer column will
become 60 and reduce the total amount of parsing needed. The rea-
son size and ws are beating lsf is because some of the columns
compressed using a segment length of 30 and 15 are small enough
to offset the increased parsing cost. Since lsf orders first by seg-
ment length and then by size, it does not realize the benefits of
these very small columns. As shown in Figure 6(b), the Dynamic,
Accumulation algorithm was less efficient than DecodeUp, Accu-
mulation for all orderings.

There is very little difference in the timing results of ws for De-
codeUp, Reentrant (Figure 6(c)) and approaches that use Accumu-
lation. Though the Reentrant algorithm changes the ordering of
the columns for the graycoded uniform data, the overall order is
not radically different than that of the Accumulation approach. For
cardinality 80, a typical temporary result column is used within 3
to 8 logical operations of its creation. This implies that the result
columns of the logical operations are generating roughly the same
number of atoms as the operand columns. The size ordering is
performing slightly worse under DecodeUp, Reentrant. This is be-
cause with larger cardinality, size again begins to favor columns
of segment length 15 and its performance degrades. Again, Dy-
namic, Reentrant (Figure 6(d)) is slower than Accumulation,
Reentrant. This relationship of DecodeUp being faster than

the Dynamic approach held for the remainder of our experiments.
This indicates that our heuristic, though helpful for point queries,
is not amenable to range queries. Due to space constraints, we only
show the results of DecodeUp for the remaining experiments.
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Figure 7: Execution Time (zipf2)

Next, we move on to skewed data. Figure 7(a) shows the re-
sults of DecodeUp, Accumulation applied to zipf2, without row-
ordering. Again, we see that ws is the most efficient ordering and
is 1.5× faster than random and 1.2× faster than size, for high
cardinality. The size ordering is only slightly faster than lsf.
In Figure 7(b), we observe the first significant speedup achieved
by the Reentrant scheme. On ws, Reentrant achieves a speedup of
2.09× over Accumulation for cardinality of 80. This speedup oc-
curs because, unlike the uniform data set, the growth of the result
column does not remain approximate to the size of the operands.
When ws is applied to cardinality 80, the first temporary result col-
umn is not removed from the queue until 32 operations had been
processed. The fact that size is doing almost as well as ws in-
dicates that many of the columns with shorter column lengths are
aggressively compressed.

The lsf order does not see a substantial improvement (only
1.24× speedup) for the Reentrant approach. This is because
after all of the columns of segment length 60 are processed, the
Reentrant scheme essentially becomes Accumulation. Since
DecodeUp always produces a result column with a segment length
of 60 for lsf, after all of the columns of segment length 60 are pro-
cessed, the first column polled from the priority queue will be the
result column. This is the exact pattern of Accumulation for lsf.
Figure 8 shows the results of our algorithms applied to graycode-
ordered zipf2. The pattern of the results mimic those observed
in unordered zipf2, only faster. The ordered data set produced
results for ws that were over twice as fast as unordered.
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4.3.2 KDDCup’99 Data
Table 2 shows a set of real queries posed over our KDDCup data

set. The Selection Criteria column describes the data being se-
lected for each query, and Cols displays the number of bitmap
columns that must be processed to answer the query.

ID Selection Criteria Cols
1 < 50% of connections to different hosts for the same service

and < 10% REJ and ≤ 10% SYN error. This query could in-
dicate that the host is accepting the connections and servicing
them.

32

2 < 50% of connections to the same host (or > 50% to differ-
ent hosts) were for the same service and less than 10% have
REJ errors and < 10% SYN error. A client is primarily
checking other hosts for a specific service and is not getting
rejected often.

18

3 Connections with REJ or SYN errors to the same host, but not
necessarily the same service.

39

4 src_bytes=2048 and dst_bytes < 1843. Indicates at least a
10% loss of data in the connection.

19

5 < 10% SYN and < 10% REJ error for the same service
and the same hosts. This could be used to see if some kind of
connection that is an attack is actually getting through.

32

Table 2: Queries over KDDcup Data Set
Figures 9(a) and Figure 9(b) show the time it took our different

orderings to answer the queries using both DecodeUp, Accumu-
lation and DecodeUp, Reentrant algorithms. Again, we observed
that Dynamic selection did not significantly improve query perfor-
mance, so we will not include those results. For queries 1 and
2, we see that size is actually slower than random when using
the Accumulation algorithm. In these two queries, the smallest
columns had a segment length of 15, but many were not compact
enough to compensate for the increased processing costs. The lsf
ordering is also slower than random for query 1. This is because
several of the 60 columns in this query were some of the larger
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Figure 9: Execution Time (KDDCup)

columns being processed. This meant the result column of lsf
grew very quickly. Similar to the synthetic data results, the ws
ordering outperformed all others for all queries.

As shown, there is only minor differences between the times of
Accumulations vs. Reentrant for the fastest ordering, ws. This reaf-
firms our observation that significant speed up from the Reentrant
algorithms is only realized for high cardinality queries. Though,
it is interesting to note that the size ordering did perform better
under the Reentrant scheme, though still not out performing ws.

4.4 Summary of Results
The salient findings from our experiments are as follows. For

point queries, our dynamic translation selection heuristic consis-
tently came within 3.5% of the optimal time for 1000 OR queries,
and was more efficient than simply always using DecodeUp or De-
codeDown. However, our heuristic did not extend well to range
queries. For range queries, always selecting DecodeUp appears to
be the most efficient processing method. Our study suggests that
for data sets observing uniform distribution, the Accumulation ap-
proach to range query processing is the most efficient. The over-
head of a Reentrant approach is not always surpassed for such data.
However, for skewed data, the Reentrant approach appears to be
much more efficient, providing up to a 2× speedup for higher car-
dinality data. Regardless of the type of data and the processing
algorithm used, the ws column ordering almost always produced
the fastest times.

5. RELATED WORK
Our work relates to bitmaps indices compressed using VAL, how-

ever, there are many other bitmap compression algorithms. One of
the earliest schemes was the Byte-aligned Bitmap Code (BBC) [16].
BBC is a patented encoding that uses four types of byte-aligned



atoms. The use of a 7-bit segment length allows BBC to compress
compactly but is very CPU intensive when querying. The Word-
Aligned Hybrid (WAH), which uses a word-aligned encoding, has
been shown to typically use 60% more space but executes queries
up to 12× faster [8].

Several variants of WAH have emerged recently. PLWAH [17]
and Concise [18] both modify WAH’s version of a fill atom. They
reserve dlog2 we bits, wherew is the total number of bits used for a
fill atom. If the run being represented was interrupted by a near-fill
segment, a segment containing a single dirty bit, the reserve bits
are used to indicate the position of that dirty bit. Thus, there is no
need to create an addition literal atom. PLWAH encodes near-fills
that follow a run and Concise encodes those before a run. This ap-
proach can achieve 2× the compression of WAH. Enhanced WAH
(EWAH) also modifies the formatting of fill atoms [19]. EWAH
divides the fill atoms in half. The upper half (the most significant
bits) are used to encode the flag bit, value bit and run length in the
same manner as WAH. The lower half is used to encode the number
of literal atoms that follow the fill. When processing queries, this
extra information allows EWAH to skip literal words when compar-
ing to large runs. This extra information does mean that, in some
instances, EWAH will need to use two words to encode long runs,
whereas WAH would only use one.

We recently introduced Variable-Aligned Length code (VAL) [9]
and compared it to WAH, PLWAH, and EWAH, and found that
for skewed and sorted data, VAL achieved the best compression.
We also compared timings of point query operations, using only
DecodeDown algorithm, which our current study has suggested is
slower than DecodeUp for most queries. Variable Length Com-
pression (VLC) [20] could be considered a generalization of VAL.
Like VAL, it allows each bitmap column to be compressed using
a separate segment length. Unlike VAL, the segment lengths can
be arbitrary. Corrales, et al. showed that using truly arbitrary
lengths was impractical when processing queries [20]. Instead,
they suggested limiting lengths tom×bwhere b is a common base.
When two columns compressed using different segment lengths are
queried, both are translated to the greatest common divisor of the
two lengths. It was shown that the need to translate both columns
could lead VLC to be 3 to 4 times slower than VAL. This high trans-
lation cost suggests that VLC may be amenable to query algorithm
that clusters columns compressed using the same segment length
similar to that of our lsf ordering.

Our work was inspired by Wu, et al. [10]. They evaluated the
effect of ordering on range queries for both WAH and BBC. They
also implemented a priority queue algorithm similar to the one we
used. Our study varies from theirs in several significant aspects.
We addressed the issue of column translation which is unique to
variable-aligned compression schemes. We investigated orderings
which are unique to VAL. We also used metadata to reduce the
memory foot print of our query engine and we evaluated our algo-
rithms on both real and synthetic data. Wu, et al. proposed an in-
place algorithm where one uncompressed columns is used to store
all the intermediate results from an aggregate range query to avoid
compression costs. We plan to evaluate such an approach for VAL
in the future.

6. CONCLUSION AND FUTURE WORK
Variable Aligned Length (VAL) Compression is a tunable frame-

work that allows for bitmap indexes to be compressed using varying
segment lengths. In this paper we explored optimizations to VAL’s
query engine. When VAL performs a logical operation on two
columns that were compressed using different encoding lengths,
one of the columns must be translated. We evaluated benefits of us-

ing two translation algorithms DecodeDown and DecodeUp. Our
translation select heuristic determined which algorithm to use by
analyzing parsing costs. The heuristic performed better than al-
ways using either DecodeDown or DecodeUp, and was within 3.5%
of the optimal for or queries on skewed data, slightly besting De-
codeUp. For range queries, we implemented column orderings that
were dependent on metadata gathered at compression time. The
ws ordering, which weights size by column composition, method
was tested under five query processing algorithms, and was consis-
tently able to outperform other orderings. The results of our study
also suggests that an accumulation approach to query processing is
ideal for uniform data and a reentrant priority queue approach is
better suited for skewed data.

In the future we plan to extend our translation selection heuris-
tic to make it more amenable to range queries. We think it would
be interesting to investigate the effects of column orderings on se-
quences of logical AND operations. Additionally, there may be
other range query algorithms which could be implemented in VAL.
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