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Abstract—This paper establishes a transactional energy market
in which any data center can participate. Like a stock-market
exchange, we propose a framework in which data centers can
trade energy usage (in the form of jobs) for monetary value. The
proposed framework allows each data center to monitor multiple
parameters, including the current energy prices, budgets, and
job execution states. These parameters inform the construction
of models to help participating data centers optimize various
cost, profit, and job-performance objectives to manage the risks
of market participation. In our feasibility study, market partic-
ipants mutually benefit by increasing general revenue through
either a reduction of energy costs and/or through the successful
completion of more jobs. Using real energy-pricing data, in
our simulated experiment of 100 participating data centers, we
observe a significant cost reduction leading to an average increase
of 17.8% profit margins.

I. INTRODUCTION

To minimize total operating costs, major data-center op-
erations can exploit the variability of energy prices, i.e.,
local marginal price (LMP). A more ambitious approach
to exploit price variability is through geo-diversification, in
which an organization builds multiple data center locations
across disparate geographical regions. When energy is cheap
at one location, computational workloads can be scheduled
more aggressively and even migrated there from locations
experiencing higher prices.

However, due to the high cost required to geo-diversify,
this practice is inaccessible to the vast majority of existing
data centers, which are small to medium-size (for instance,
clusters) belonging smaller outfits like co-location companies,
research labs, and educational institutions [1]. Therefore, the
majority of data-center operations are unable to fully exploit
LMP like their larger counterparts.

In this paper we describe a market-based framework to
increase access to geo-diversification for all data centers.
We envision a market in which any data center can par-
ticipate in the free trading of energy through the exchange
of computation. Participating data centers may buy and sell
resource allocations from each other based on the current
state of their respective energy costs. For this market to be
successful in a real world environment, there are many factors
that must be considered. The purpose of our research is to
assuage any concerns via the construction of a simulation
that mimics the day-to-day operations of such a market. Real

workload traces inform our models on the inner workings
of a data center, which includes considerations for workload
distribution, arrival rates, I/O characteristics, data footprint,
etc., to how they translate to overall power consumption and
costs. The creation of representative data-center models and
the availability of real energy-pricing data together allow us
to study the viability of an energy-trading market at various
scales of deployment.

Specific contributions of this work include:
• An open market for trading jobs among data centers is

proposed, which allows small and medium data centers
to access geo-diversification.

• Our data center operations (workload and power usage)
were modeled based on real workload traces and are
consistent with previous research. Our models inform a
novel algorithm for a data center to make decisions on
whether to enter the market, and whether to buy or sell
jobs for revenue or cost reduction, respectively.

• We conducted a simulated feasibility study and showed
that, with enough data center participants, the market
affords data centers significant increases in profit through
energy-cost reductions and higher job completion rates.

The remainder of this paper is organized as follows. In
Section II we present the system overview. Section III explains
the methods used to simulate by market participants, forming
realistic energy transactions. Experimental design and results
are presented in Section IV. Section V outlines the related
work, and we conclude our findings in Section VI.

II. PROPOSED FRAMEWORK

The overarching framework to support an energy market is
depicted in Figure 1. The framework is organized into two
tiers of operation.
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Fig. 1: Transactional Framework for Workload Exchange



Transaction Tier: At any given time, a data center may
decide to either curtail or ramp-up energy usage. The Trans-
action Tier must consult the current energy prices (input),
prediction models, workload states, and solve optimizations to
make sound decisions that include, but may not be limited to,
the size, duration, and the cost of the ask or bid for resources.
The data center might be satisfied through: (1) adjusting its
aggressiveness in scheduling local jobs, (2) buying additional
jobs that are off-site to increase revenue, or (3) placing jobs
for sale on the market. In the latter two cases, the Transaction
Tier can submit the following types of requests to its peers:

• Ask: Requests computational resources in other data
centers. An ask may include the number of servers, server
specifications, start time, and a duration of the requested
servers.

• Bid: A bid is an offering of local resources in response
to an existing ask. Bids can also be unsolicited if the data
center is eager to use up its cheap energy and available
server capacity. Bids include the number of available
servers, server specifications, start time, cost, and duration
for which the prescribed costs are guaranteed. After the
bid’s duration has elapsed, the resources or costs may
become volatile.

• Accept & Commit: Signals an acceptance of an ask or bid
with a second party. Conversely, a commit acknowledges
the acceptance from the other party, and the resources
become available at the agreed-upon start time.

• Cancel: Cancels an existing ask or bid that has yet to be
accepted.

Workload Tier: The purpose of this tier is two-fold. On
one hand, it informs the Transaction Tier on making right-sized
job purchases or sales, and on the other hand, it communicates
with the Server Tier below to acknowledge its locally available
resources. The components in this tier are therefore responsible
for the monitoring, deferment, scheduling, and migration of
workloads as means to maximize performance objectives such
as response time. The current workload state is monitored,
including: the job queue, each job’s progress, and the servers
onto which the jobs are assigned. The workload state provides
input to the power models, which allows the Transaction Tier
to make proper decisions in the market.

To operationalize the two tiers, we need to introduce some
system models. We assume a data center comprises a set of
clusters and that each cluster is assigned multiple servers on
which tasks are executed. For simplicity, servers are assumed
to be homogeneous, each with a predefined amount of CPU,
memory, and disk capacity.

The data center’s execution model is represented as a queu-
ing system, in which jobs arrive at constant time intervals. We
define a sequence of time units (t0, t1, ..., tn−1), and adjacent
time intervals ti − ti−1 are constant, for all i. A λ arrival
rate is used to assign the average number of jobs that a single
data center should observe in a given interval, and the actual
number of jobs that arrive are based on a Poisson distribution.
We introduce a balking rate based on the current stress of the

data center, defined as the ratio between the combination of
CPU, memory, and disk utilization at time ti over the total
capacity of those resources (e.g., at 33% capacity, a third of
jobs will balk).

Jobs and tasks are the subject of all of work done
in data centers. A job J may consist of a set of tasks
J = {j0, j1, ...}, and each task j ∈ J represents a
single schedulable and executable thread. A job J asso-
ciates with a tuple (cpuJ ,memJ , diskJ , revJ , durJ), where
cpuJ ,memJ , diskJ refer to J’s normalized CPU utilization,
RAM, and disk requirements. revJ denotes the revenue gen-
erated for the completion of job J , and durJ refers to J’s
predicted execution time given those prior resources. These
values are divided by task, i.e.,

∑
j∈J cpuj = cpuJ . Based

on diskj , we estimate its amount of input data (dataInj)
and output data (dataOutj). These designate the I/O costs
associated with the job upon its arrival to the data center, and
the total amount of data it will generate upon completion.
We assume that a task’s memory footprint grows or shrinks
linearly, i.e., adjusted by dataOutj−dataInj

diskj
per time unit. The

current memory footprint for tasks is tracked, because it
directly affects job transfer costs to a different data center.

III. TRANSACTING ON THE MARKET

The market agent was designed with free market transaction
in mind. We want a system which can assist data centers in
keeping under budget while helping to maximize profit. We
sought to populate the market with sellers (those offering jobs
to offload), and buyers (those looking to purchase and finish
execution of others’ jobs). The largest hurdle to clear is to
predict when work should be offloaded.

We assume that each data center is assigned a participation
interval, τ . At the start of every τ time units, the data center
predicts future costs and considers entering the market to
increase profit. To project cost, we require the list of currently
executing jobs, and the current total resource usage (stress)
of the data center. Using these, we iterate through the list of
currently executing jobs, calculating the cost and stress that
each job is placing on the local data center, stopping when
the cumulative stress of the jobs match the stress currently
being placed on the center.

These jobs are stored in a list, which is then filtered for
all jobs that would finish during the next τ interval, removing
the stress of these from the stress total. We then repeat this
process until there are no more jobs that would see execution
during the interval. The total relative cost of all of these jobs is
compiled and divided by the average failure rate for a single
cluster. The result is then factored into the τ time interval,
giving us a final total projected cost value. A data center will
enter the market as a job-seller if the following condition is
met:

p(ti+1) >
budget

ti − ti−1
+ ε

where p(ti+1) is the projected cost in for the next time
unit, ti+1 and ε is a buffer put to prevent data centers from



entering the market if they are a negligible amount over
or under budget. Otherwise, the data center will decide to
enter the market as a buyer. Upon market entry, a seller can
choose places to send work, and a buyer can offer a resource
availability and a price.

Let us consider the case in which the energy rates for
a data center is projected to increase over the next time
interval, and that it has determined that selling jobs to a third
party would allow it to maximize profit. Two problems arise:
First, how does a data center determine which jobs would be
most beneficial to offload? Second, how does a data center
determine fair market prices the jobs?

Recall that each job J is associated with a vector
〈cpuJ ,memJ , diskJ , revJ , durJ〉. Assume that job J has
been executing for T time units, where 0 ≤ T ≤ durJ on
the local data center. If J is to be offloaded to a remote site,
we will assume that the revenue for completing the job will be
transferred to that site. Therefore, the local data center would
be interested in retaining only the proportion of revenue for
processing it for T time units. We set the price of J on the
market to be,

priceJ = revJ

(
1− durJ − T

durJ

)
+migCostJ

migCostJ =
(dataInJ + dataOutJ)

BW
· transferCost

where migCostJ is the overhead of migrating J to the
remote data center. The cost of migration is nontrivial, as
it must transfer the necessary input data dataInJ plus the
intermediate output data dataOutJ over a wide area network,
whose average bandwidth BW determines the overall job
transfer time. The transfer time is then factored into a cost
per unit time to derive the total migration time for J .

We now describe the process of identifying candidate jobs
to offload. The first objective we are seeking to minimize job
failure rate by maximizing the total time a job has left to
execute post-transfer. The other objective aims to maximize
the number of low-revenue jobs sent out of the data center,∑

1
revJ−costJ . We seek to find the optimal set of jobs from the

candidate list to send to the market. In order to include both
factors, these individual candidate lists are created, normal-
ized, weighted, and then finally combined before being sorted
and selecting the final bundle.

Once it has been determined that a data center is under
budget, all that is required to determine an onload is projected
cost and the budget for the given time interval, budget

τ . The
theoretical maximum that this data center could take on while
still remaining under budget is calculated, and the amount the
center is currently taking is subtracted from this, giving the
amount of buffer with which the data center has to operate.
This value then multiplied by the maximum cost that could
be incurred by the center, gives the estimated total cost of
bringing new work into the center.

IV. EXPERIMENTAL RESULTS

For a market to be viable, it must be mutually beneficial for
the participants. In this section we present preliminary results.

To test the validity of our market, we implemented a discrete-
event simulator.

A. Experimental Setup

First we describe data sets and how system parameters were
derived in our experimental setup.

1) Data Center Operation: We modeled our data-center
operations based on the Google workload trace data [2],
which contained information pertaining to job/task scheduling,
including their resource allocation (e.g., CPU, memory, disk)
and duration. According to Alam, et al., the trace data was
taken from a single cluster containing of 11000 cores [3]. The
actual resource usage numbers themselves were obfuscated by
Google using a linear transformation, normalizing all values to
[0, 1], which makes it difficult to ascertain the exact hardware
used in the trace. In our simulation we assumed that all
CPUs are homogeneous and contained 10 cores. Under ideal
conditions, each 10-core CPU can execute 1200 processes per
minute on each core.

A task is a single-core process deployed for execution. We
model tasks using the same method as proposed by Mishra,
et al. [4]. They categorized length and type of tasks, breaking
down average normalized requirements for each category. The
categories are shown in Table I. Tasks are split upon creation:

Size Core RAM Local Disk Duration
S 0.2 0.2 0.0001 3 - 20 minutes
M 0.3− 0.51 0.3− 0.5 0.001 3 - 20 minutes
L 0.5− 1.0 0.5− 1.0 0.01 18 - 24 hours

TABLE I: Task Types

90% generated are Small, and the remaining 10% are Large.
Jobs are classified as short (0-2 hours) at a 90% rate and
long jobs (18 - 24 hours) at a 10% rate. According to Di, et
al. [5], this rate is consistent with the split of jobs present in
the Google cluster trace.

To assign a representative job λ-arrival rate for the model,
we used numbers reported by Chen, et al. [6], which specified
that 57.6% of jobs were completed, whereas 40.1% of jobs
were killed by the system scheduler. We found that a λ rate
of 0.13875 results in the same percentages for a single cluster
in the simulation. Finally, we assume that simulated data
centers are connected over wide-area networks with average
bandwidth (BW ) ranging anywhere from 0.5 Gbps to 2 Gbps.
This rate is used for estimating job transfer times from site to
site.

2) Power-Usage Costs: A data center’s total power usage
is largely dominated by two factors: overall server power
consumption and a cooling overhead. To model the former, we
assume the idle power consumption of a CPU to be 161W and
the peak consumption was set to 230W. We assign the cooling
overhead to be 33% of the total server consumption at any
point in time; this rate is informed by previous research [7].
On the cost side, we acquired hourly energy-pricing data from
Sep 1, 2017 to Sep 1, 2018 pertaining to five major power
utilities covering a wide geographical expanse in the U.S.,
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namely CAISO, NYISO, SPPISO, MISO, PJM, covering 25
states and spanning all 4 time zones.

B. 2-Participant Results
In order to thoroughly vet the market, we sought to test the

system under two different scenarios. In this first scenario, we
are interested in showing the impact between two isolated data
centers in opposing geographic locations in the U.S. The two
ISOs we chose for the simulation were CAISO and NYISO.
We placed a 2-cluster data center in CAISO, and a 5-cluster
(medium-sized) data center in NYISO. Figure 2 shows the
aggregated energy usage (mWh) for the two data centers when
participating in the market (market) and when they are not
(non-market) for a full year. There is very little to no
discernible difference. In fact, the total energy used in the
market was 600400 mWh, while the total used in the non-
market scenario was 601040 mWh, accounting for only a net
0.07% decrease in energy saved.

The cost, shown in Figure 3 however, tells a slightly
different story. Unlike energy usage, where we saw a minor
reduction, the total cost for operating in the market actually
increased slightly. The total cost of participating in the market
for a year was 19, 523, 000 while the total cost for operating
without the market was 19, 364, 800, resulting in a 1.25%
increase in cost for operating in the market. The revenue
does its best to make up for cost in this scenario, peaking
at 83, 903, 000 for the centers participating, where as those in
the non-market peaked at 82, 759, 000. In total, it resulted in a
1.91% increase in revenue for the market over the non-market.

We also observed metrics related to performance. In the
market scheme, the job throughput dipped 0.89% compared
to to non-market. We also saw a 0.9% increase in job
failures, likely due to the migration times adding too much
overhead for the jobs to meet their deadlines. Overall, if there
is low data-center participation in the market, little is to be
gained, and in fact, it may even prove costlier to data centers.

C. 100-Participant Results
Next, we simulated the market with a higher number of

participants. We distributed 100 mixed-size data centers across
the U.S. based on geographical distributed provided by [8],
there are 125 data centers in NYISO’s operating region, 181
in CAISO, 220 in MISO, 263 in PJM, and 58 in SPP. Using
these distributions, we scaled the number of data centers down
to 100, placing 15 in NYISO, 22 in CAISO, 26 in MISO, 31
in PJM, and 6 in SPP. The results of this simulation were as
follows.

Figure 5 shows the total energy usage for all 100 data
centers participating in the workload exchange market versus
the non-market scheme. Much like the small run from earlier
we see very little change in the overall energy usage. The
market used 8, 819, 300 mWh total while the non-market used
8, 805, 100 mWh total. This accounts for a small increase in
overall energy usage (0.09%).

In Figure 6, we can observe a much more pronounced
increase in overall energy costs. This is expected; with there
being more activity on the market, more jobs are being
executed over the same period of time (this is later verified



with results showing higher job throughput). The total cost
of operating in the market peaked at 452, 590, 000, while the
non-market peaked at 264, 420, 000, a significant increase of
65.49%.

Figures 7 reports the revenue for each time instant. The
market action is quite strong, suggesting that many jobs are
being traded. The cumulative revenue shows that in total, the
market actions lead to significant gains in profit. The market
saw a peak revenue of 1, 598, 500, 000, while the non-market
peaked at 1, 206, 700, 000. Subtracting the (higher) costs from
these figures to obtain overall profit, we observe a 17.8%
increase in profit when using the market.

V. RELATED WORK

Larger-scale data centers can be geographically distributed
over a wide-area network, and if the participating data centers
are located in different energy markets, then opportunities for
cost reduction can be exploited. Several authors propose the
follow-the-renewables policy [9]–[12], where workloads are
routed among various green data centers to take advantage
of their local renewables. Geographical load balancing fo-
cuses on shifting workload to locations with lower energy
prices. Qureshi, et al. present an analysis of data centers’
cost reduction by simulating traffic routing to various data
centers in wholesale energy markets [13]. Buchbinder, et al.
propose online solutions for migrating batch jobs to optimizing
costs [14].

Rao, et al. minimize overall costs by solving for optimal
resource allocation and request rates at multiple data cen-
ters [15], [16]. Chen, et al. presented a centralized scheduler
that migrates workloads across data centers in a manner that
minimizes brown energy consumption while ensuring the jobs’
timeliness [17]. Zhang, et al. additionally consider meeting a
budget cap [18]. Liu, et al.’s work on greening geographical
load balancing [19], [20] assumes a general Internet service-
request workload for data centers located in various geo-
graphical regions. They proposed distributed algorithms for
minimizing aggregated costs by solving for an optimal number
of active servers per data center and a load balancing policy
(request routing). Adnan, et al. consider online optimization
of job schedules, then using migration to reconcile prediction
errors for optimizing costs while meeting deadlines [21].

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed an transactional energy market
in which any data center can trade jobs across geographical
locations to exploit differences in energy pricing. We modeled
our system using real workload traces, and acquired actual
energy-pricing data to conduct our feasibility study. Overall,
we showed that, through market participation, data centers can
substantially increase profit and job throughput.

With the feasibility study completed, our future work in-
volves providing the models and mechanisms for data centers
to trade jobs given dynamic pricing signals. One area of focus
will be on the migration of common job types. Novel work-
transfer and scheduling mechanisms must be developed as part

of the supporting framework to transparently operationalize
transactions over heterogeneous parallel architectures.
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