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ABSTRACT
Data management systems commonly use bitmap indices to in-

crease the efficiency of querying scientific data. Bitmaps are usu-

ally highly compressible and can be queried directly using fast

hardware-supported bitwise logical operations. The processing of

bitmap queries is inherently parallel in structure, which suggests

they could benefit from concurrent computer systems. In particular,

bitmap-range queries offer a highly parallel computational problem,

and the hardware features of graphics processing units (GPUs) offer

an alluring platform for accelerating their execution.

In this paper, we present three GPU algorithms and one CPU-

based algorithm for the parallel execution of bitmap-range queries.

We show that in 95% of our tests, using real and synthetic data, the

GPU algorithms greatly outperform the parallel CPU algorithm. For

these tests, the GPU algorithms provide up to 87.7× speedup and

an average speedup of 30.22× over the parallel CPU algorithm. In

addition to enhancing performance, augmenting traditional bitmap

query systems with GPUs to offload bitmap query processing allows

the CPU to process other requests.
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1 INTRODUCTION
Modern applications are generating a staggering amount of data.

For example, the Square Kilometre Array (SKA) Pathfinders are

a collection of radio telescopes can generate 70 PB per year [30].

Efficient querying of massive data repositories relies on advanced

indexing techniques that can make full use of modern computing

hardware. Though many indexing options exist, bitmap indices in
particular are commonly used for read-only scientific data. A bitmap

index produces a coarse representation of the data in the form of a

binary matrix. This representation has two significant advantages:
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it can be compressed using run-length encoding, and that it can

be queried directly using fast primitive CPU logic operations. This

paper explores algorithmic designs that enable common bitmap-

index queries to execute on computational accelerators, graphics

processing units (GPUs), in particular.

Table 1: Example Relation and Corresponding Bitmap

Produce

ID Fruit Quantity

t1 Apple 548

t2 Orange 233

t3 Kiwi 257

t4 Durian 3

Bitmap of Produce

ID Fruit Quantity
f0 f1 f2 f3 q0 q1 q2 q3 q4

t1 1 0 0 0 0 0 0 0 1

t2 0 1 0 0 0 0 1 0 0

t3 0 0 1 0 0 0 1 0 0

t4 0 0 0 1 1 0 0 0 0

A bitmap index is created by discretizing a relation’s attributes

into a series of bins that represent either value ranges or distinct

values. Consider the example shown in Table 1. The Produce relation
records the quantity of particular fruits available at a market. A

potential bitmap index that could be built from Produce is shown
below it. The f bitmap bins under the Fruit attribute represent
the distinct fruit items that can be referred to in the relation: f0
encodes Apple, f1 represents Orange, and so on. Where the f bins

represent discrete values, the q bins under Quantity represent

value ranges. Specifically, q0 represent [0, 100), q1 is [100, 200), q2
is [200, 300), q3 is [300, 400), and q4 is [400,∞). Each row in the

bitmap represents a tuple from the relation. The specific bit pattern

of each row in the bitmap is generated by analyzing the attributes

of the corresponding tuple. For each attribute in a tuple, a value of 1

is placed in the bin that encodes that value and a value of 0 is placed

in the remaining bins for that attribute. For example, consider tuple

t1 from Produce. Its Fruit attribute is Apple, so a 1 is placed in f0
and the remaining f bins in that row are assigned 0. The Quantity
of t1 is 548, this value falls into the [400,∞) range represented by

bin q4, so that bin is assigned a 1 and all other q bins get 0.

Bitmap indices are typically sparse, which makes them amenable

to compression using hybrid run-length encoding schemes. Numer-

ous such schemes have been developed (e.g. [3, 11, 14, 17, 41]), and
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among these, one of the most prominent is theWord-Aligned Hy-
brid code (WAH) [39]. It has been shown that WAH can compress

a bitmap to just a small fraction of its original size [40].

One major benefit of bitmap indices is that they can be queried

directly, greatly reducing the number of tuples that must be scanned

from disk. Considering the example from Table 1, suppose a user

executes a range query of the form:

SELECT * FROM Produce WHERE Quantity >= 100;

This query can be processed by executing the following bitmap

formulaq1∨q2∨q3∨q4 = r where r is the result column of a bitwise

OR between the q1, q2, q3, and q4 bins. Every row in r that contains
a 1 corresponds with a tuple in Produce that has a Quantity in the

desired range. Moreover, a WAH compressed bitmap can be queried

directly without first being decompressed in a very similar manner.

Notice that the above range query example could easily be exe-

cuted in parallel. For example, one process could be executeq1∨q3 =
r1, another could perform q2 ∨ q4 = r2, and the final result could

be computed by r1 ∨ r2 = r . It is clear that the more bins that are

needed to be processed to answer a range query, the more speedup

a parallel approach could realize. This describes a classic parallel

reduction, requiring loд2(n) rounds to obtain a result.

In the past decade the applicability of graphics processing units

(GPUs) has expanded beyond graphics to general-purpose com-

puting. GPUs are massively parallel computational accelerators

that augment the capabilities of traditional computing systems. For

example, an NVIDIA Titan X GPU is capable of executing 57,344

concurrent threads. Coupled with high-bandwidth memory, GPUs

are a natural fit for parallel computing and may be able to increase

the efficiency of data management systems. Previous works have

shown that WAH-style compression, decompression, and point

queries can be processed efficiently on GPUs [1, 2]. Our work ex-

plores algorithms that exploit various GPU architectural features

to accelerate WAH range-query processing.

The specific contributions of this paper are:

• We present parallel algorithms for executing WAH range

queries on multi-core CPUs and GPUs.

• We present refinements to the GPU algorithm that exploit

hardware features to improve performance.

• We present an empirical study on both real-world and syn-

thetic data. Our results show that the GPU algorithms are

capable of outperforming the CPU algorithm by up to 87.7×

and by 30.22× on average. When compared to only the best

performing CPU tests, the GPU algorithms still provide 5.64×

speedup for queries of 64 bins and 6.44× for queries of 4, 8,

16, 32, and 64 bins.

The remainder of the paper is organized as follows. We provide

overviews of WAH algorithms and GPUs as computational accelera-

tors in Section 2. We describe our parallel WAH query algorithms in

Section 3. Our experimental methodology is presented in Section 4.

Section 5 presents the results of our empirical study with discus-

sion in Section 6. We describe related works in Section 7 before

presenting conclusions and plans for future work in Section 8.

Oriдinal bit vector in 63 bit chunks︷                                                                                          ︸︸                                                                                          ︷
000000000100000000000000000000000000000000000000000000000000101

000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000

(a) Uncompressed bit vector

64 bit WAH literal atom︷                                                                                             ︸︸                                                                                             ︷
0|000000001000000000000000000000000000000000000000000000000000101

WAH f il l atom︷                                                                                             ︸︸                                                                                             ︷
1|0|00000000000000000000000000000000000000000000000000000000000010

(b) WAH compressed bit vector

Figure 1: WAH Compression

2 BACKGROUND
2.1 Word-Aligned Hybrid Compression (WAH)
WAH compresses the bitmap bins (bit vectors) individually. During

compression, WAH chunks a bit vector into groups of 63 consec-

utive bits. Figure 1(a) shows an example bit vector. This vector

consists of 189 bits, implying the relation it is taken from contained

that many tuples. In the example, the first chunk contains both

ones and zeros, making it heterogeneous. The last two chunks are

homogeneous containing only zeros.

Heterogeneous chunks are encoded in WAH literal atoms. For

efficient query processing, WAH atoms are tailored to the system

word size. Literal atoms have the form (f laд, lit), where the most-

significant-bit (MSB) or f laд is set to 0, indicating the atom is a

literal. The remaining 63 bits, lit , record verbatim the heterogeneous

chunk of the original bit vector.

WAH groups sequences of homogeneous chunks and encodes

them in fill atoms. Fill atoms have the form (f laд,value, runLen).
The f laд, or MSB, is set to 1 designating the atom as a fill. The
second-MSB isvalue and records the value of the run being encoded
1s, or 0s. The remaining 62 bits are runLen, which records the

number of homogeneous chunks that have been clustered together.

In Figure 1(a), the last two chunks are homogeneous, so they are

grouped into a fill. The chunks are a run of 0’s so the value bit is
set to 0 and runLen is set to two since the group is made of two

chunks.

One of the advantages is that WAH-compressed bit vectors can

be queried directlywithout decompression. For example, letX andY
be compressed bit vectors andX ◦Y = Z where ◦ is a bitwise logical

operation, and Z is the resulting bit vector. The query algorithm

treats X and Y as stacks of atoms. Processing starts by popping

the first atom off each vector. The atoms are then analyzed until

they are fully processed or exhausted. When an atom is exhausted,

the next atom from that vector is popped. There are three possible

atom-type pairings during processing:

(1) (literal,literal): Let ai and aj be the current literals being
processed from X and Y respectively. In this case, a result
literal atom is added to Z where Z .result .lit = X .ai .lit ◦
Y .aj .lit . After this operation a new atom is popped from both

X and Y as both operand literal atoms have been exhausted.

(2) (fill,fill): In this case, a fill atom result is added to Z of the

form,

Z .result .value = X .ai .value ◦ Y .aj .value and
Z .result .runLen = Min(X .ai .runLen,Y .aj .runLen)
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Processing fills produce side effects for the operand atoms.

Specifically, ai .runLen = ai .runLen − result .runLen and

aj .runLen = aj .runLen − result .runLen This will exhaust

the atom with the shorter runLen or both if they are the

same.

(3) (fill,literal): in this case result is a literal. Assume X .ai is
the fill word. If X .ai .value is 1 then Z .result .lit = Y .aj .lit ,
else Z .result .lit = 0. This will exhaust Y .aj and result in

X .ai .runLen = X .ai .runLen − 1.

Note that this approach of processing atom pairs ensures tuple

alignment.

When applied to bit-vector pairs, the above approach handles

point queries. This can easily be extended to apply to range queries.
Range queries seek tuples with values that fall between an upper

and lower bound. A bitmap index can be used to process such

queries in the following manner: R = A1 ∨ A2 ∨ ...An where Ai
is a bitmap bin that encodes attributes within the desired range.

The resulting bit vector R will indicate the tuples that should be

retrieved from disk. A simple iterative algorithm is often employed

to solve range queries. First R is initialized to A1, then R ← R ∨Aj
is repeated for all j such that 2 ≤ j ≤ n.

2.2 Graphics Processing Units (GPU)
Using NVIDIA’s compute unified device architecture (CUDA) pro-

gramming platform for GPUs, thousands of threads can be orga-

nized into 1-, 2-, or 3-dimensional Cartesian structures that natu-

rally map to many computational problems. Hierarchically, these

structures comprise thread grids, thread blocks, and threads as

shown in Figure 2. Threads are executed in groups of 32, ergo,
thread blocks are typically composed of 32m threads wherem ≥ 1.

Figure 2: The organizational hierarchy used by NVIDIA’s
CUDA to structure groups of threads. Shown is a 2 × 4 2-
dimensional thread grid of thread blocks, where each 1-
dimensional thread block is composed of 8 threads along the
x-dimension.

Alongside the thread hierarchy, The NVIDIA GPUs memory

hierarchy conforms to its organization of threads. The memory

hierarchy is composed of global, shared, and local memory. Global

memory is accessible to all threads. Each thread block has private

access to its own low-latency shared memory (∼ 100× less than

global memory latency) [12]. Each thread has its own private lo-

cal memory. To fully realize high-bandwidth transfers from global

memory, it is critical to coalesce global-memory accesses. For an ac-

cess to be coalesced, it must meet two criteria: 1) the set of memory

addresses are sequential and 2) the set of memory addresses span

the addresses 32n to 32n + 31, for some integer, n. Coalesced global

memory accesses allow the GPU to batch memory transactions in

order to minimize the total number of memory transfers.

3 PARALLEL RANGE QUERIES
In Section 2.1 we briefly described how a range query of the form

A1 ∨ . . . ∨An , where Ai is a bitmap bin can be solved iteratively.

However, the same problem could be solved in parallel by exploiting

independent operations. For example, R1 = A1 ∨ A2 and R2 =
A3 ∨ A4 could be solved simultaneously. An additional step of

R1 ∨ R2 would yield the final result. This pattern of processing is

called a parallel reduction. Such a reduction transforms a serial

O(n) time process to a O(logn) algorithm where n is the number

of bins in the query.

Further potential for parallel processing arises from the fact that

row operations are independent of one another (e.g., the reduction

along rowi is independent of the reduction along rowi+1). Thus,

in principle, all the bitwise operations performed along a row can

be processed in parallel using a reduction technique. In actuality,

independent processing of rows in compressed bitmaps is very

challenging. The difficulty comes from the variable compression

achieved by fill atoms. In the sequential -query algorithm this is not

a problem as compressed bit vectors are treated like stacks, where

only the top atom on the stack is processed and only after all of

the represented rows have been exhausted is it removed from the

stack. Without additional information, it would be impossible to

select an atom in the middle of a compressed bit vector and know

the rows it represents without first examining the preceding atoms

to account for the number of rows compressed in fills.

In the remainder of this section we present parallel algorithms

for WAH range queries for GPUs and Multi-Core CPUs.

3.1 GPU Methods
All of our GPU-based range-query algorithms rely on the same

preparations stage. In this stage, the CPU sends compressed columns

to the GPU. As concluded in [2], it is a natural decision to decom-

press bitmaps on GPUs when executing queries as it reduces the

communication costs between CPU and GPU. Once the GPU ob-

tains the compressed columns, it decompresses them in parallel

using Algorithm 1. Once decompressed, the bit vectors involved

in the query are word-aligned. This alignment makes the bitwise

operation on two-bit vectors embarrassingly parallel, and an ex-

cellent fit for the massively parallel nature of GPUs. One notable

implementation difference is that 32-bit words were used in [1, 2],

while we use 64-bit words. We also modified their algorithm to

exploit data structure reuse.

Algorithm 1 Parallel column decompression

1: procedure Decompression(Cols)
2: ▷ Cols is a collection of decompressed bit vectors
3: for all C ∈ Cols in parallel do
4: dCols ← dCols

⋃
DecompressVector (C)

5: end for
6: return dCols
7: end procedure

The key to this algorithm is the call to DecompressVector . This
procedure is a slightly modified version of the decompression algo-

rithm presented by Andrzejewski and Wrembel [1]. For brevity, we

do not present the pseudocode for DecompressVector . At a high
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level, it uses several exclusive scans (parallel element summations)

to create an indexing structure of the compressed vector. The proce-

dure then uses this structure to assign a single thread to build each

word in the decompressed column. Figure 3 illustrates an example

of this thread alignment, in whichC is aWAH compressed bit vector

composed of three literal atoms (L0, L1, and L2) and two fill atoms

(the shaded sectors). For each literal, DecompressVector uses a sin-
gle thread that writes the value portion of the atom to the Result
bit vector. Fill atoms need as many threads as the number of com-

pressed words the fragment represents. For example, consider the

first fill inC , it encodes a run of three words of 0.DecompressVector
creates three threads all reading the same compressed word but

writing 0 in the three different locations in Result. If a run of 1s had

been encoded, a value of 0x3FFF FFFF FFFF FFFF would have

been written instead of 0.

L0 L2L1

Fill
(1,0,3)

Fill
(1,0,4)

L0 L1 0 0 0 L2 0 0 0 0

C:  WAH
compressed

bit vector

Result:
decompressed

bit vector

Threads

Figure 3: Representation of DecompressVector pro-
cedure.

Here we present three different methods for executing range

queries in parallel on GPUs. These are column-oriented access

(COA), row-oriented access (ROA), and hybrid access approaches.

These approaches are analogous to structure-of-arrays, array-of-

structures, and hybrid access methods; revolving around how data

is organized and accessed to improve global memory coalescing

and have been used successfully to accelerate scientific simulations

on GPUs [35, 38].

3.1.1 Column-Oriented Access (COA). Our COA approach to range

query processing is shown inAlgorithm 2. This naïve GPU approach

is shown in Figure 4a. The COA procedure takes a collection of

decompressed bit vectors needed to answer the query. At each

level of the reduction, the bit vectors that require processing are

divided into two equal groups: low-order vectors and high-order

vectors. The s variable in Algorithm 2 stores the divide position

(lines 6 and 15). During processing, the first low-order vector is

paired with the first high-order, as are the seconds of each group and

so on (lines 9 and 10). The bitwise operation is performed between

these pairs. To increase memory efficiency, the result of the query

operation is written back to the low order column (Algorithm 2,

line 12). The process is then repeated using only the low-order

vectors as input until a single decompressed bit vector remains. The

final bit-vector can be copied back to the CPU.

Figure 4a shows this pattern of column accesses for the range

query across bit vectors 0 through 3. A 1-dimensional thread grid

Algorithm 2 Column-oriented (COA) query processing

1: procedure COA(Cols)
2: ▷ Cols is a collection of decompressed bit vectors
3:

4: m ← |Cols | ▷m is the number of bit vectors in the query
5: n ← |Cols0 | ▷ n is the number of words in a bit vector
6: s ←m/2
7: while s >= 1 do
8: for c ← 0 to s − 1 in parallel do
9: c1← Colsc
10: c2← Colsc+s
11: for t ← 0 to n − 1 in parallel do
12: c1t ← c1t

∨
c2t

13: end for
14: end for
15: s ← s/2
16: end while
17: return Cols0
18: end procedure

0 1 2 3

Low-
order

High-
order

0 1

0

(a) COA Reduction

10
24

 w
or

ds
 o

f
de

co
m

pr
es

se
d

bi
t v

ec
to

r

System
word

Each thread reads one aligned word from
each bit vector, ORs them, then writes the

result back to the low-order bit vector

0 2Thread
Grid

Thread
Blocks

Thread Block

(b) COA thread grid, block, and work layout

Figure 4: Shown here are (a) the reduction pattern used
by the COA method and (b) the mapping of thread blocks
within thread grids to the WAH query data.

is assigned to process each pair of bit vectors. Note that multiple

thread blocks are used within the grid, as a single GPU thread block

cannot span the full length of a decompressed bit vector. Figure 4b

shows how the thread grid spans two columns and illustrates the

inner workings of a thread block. As shown, a thread block encom-

passes 1024 matched 64-bit word pairs from two columns. A thread

is assigned to each pair of words. Each thread performs the OR
operation on its word pair and writes the result back to the operand

word location in the low ordered column. As each thread grid only

has access to a very limited shared memory (96 kB for the GPU used
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in this study), and since each round of the COA reduction requires

the complete result of the column pairings, all of COA memory

reads and writes have to be to global memory. Specifically, given a

range query ofm bit vectors, each with n rows, and a system word

size of w bits, the COA approach performs (2m − 2) nw coalesced

global memory reads and (m−1) nw coalesced global memory writes

on the GPU.

3.1.2 Row-Oriented Access (ROA). Algorithm 3 presents our ROA

approach to range query processing. Because all rows are indepen-

dent, they can be processed in parallel. To accomplish this, ROA

uses many 1-dimensional thread blocks that are arranged to create a

one-to-one mapping between thread blocks and rows (Algorithm 3,

line 6). This data access pattern is shown in Figure 5. The figure rep-

resents the query C0

∨
C1

∨
C2

∨
C3, where Cx is a decompressed

bit vector. As shown, the individual thread blocks are represented

by rectangles with perforated borders. Unlike COA, where thread

blocks only span two columns, the ROA thread blocks span all

columns of the query (up to 2× the maximum number of threads

in a thread block.)

Inside any given ROA thread block, the column access pattern

within it is identical to the COA pattern (Algorithm 3 line 9-12). The

words of the row are partitioned into low-order and high-order by
column ID. Each thread performs a bitwise OR on word pairs, where

one operand word is from the low-order columns, and the other

is from the high-order set (shown in the Thread block of Figure 5).

The results of the operation are written back to the low order word.

Algorithm 3 Row-oriented access (ROA) query processing

1: procedure ROA(Cols)
2: ▷ Cols is a collection of decompressed bit vectors
3:

4: m ← |Cols | ▷m is the number of bit vectors in the query
5: n ← |Cols0 | ▷ n is the number of words in a bit vector
6: for t ← 0 to n − 1 in parallel do
7: s ←m/2
8: while s >= 1 do
9: for c ← 0 to s − 1 in parallel do
10: c1← Colsc
11: c2← Colsc+s
12: c1t ← c1t

∨
c2t

13: end for
14: s ← s/2
15: end while
16: end for
17: return Cols0
18: end procedure

Like COA, a ROA reduction has loд2(n) levels, where n is the

number of bit vectors in the query. However, all of ROA processing

is limited in scope to a single row. By operating along rows, the

ROA approach loses coalesced global memory accesses as row

data are not contiguous in memory. However, for the majority

of queries, the number of bit vectors is significantly less than the

number of words in a bit vector. This means that ROA can use low-

latency GPU shared memory to store the row data (up to 96 kB)

and perform the reduction. Using shared memory for the reduction

avoids repeated reads and writes to high-latency global memory

(∼ 100× slower than shared memory). Given a range query ofm
bins, each with n rows, and a system word size ofw bits, the ROA

approach performs
mn
w global memory reads and

n
w global memory

writes. A significant reduction of both relative to COA.

0System
word 1 2 3

Low-
order

High-
order

Threads within a block performing OR operation

Results saved in
low-order words

0 1 2 3

Thread
grid

Thread
block

Thread block

Figure 5: The data access pattern and work performed by
each ROA thread block.

3.1.3 Hybrid. We form the hybrid approach to range query pro-

cessing by combining the 1-dimensional COA and ROA data access

patterns into 2-dimensional thread blocks. These 2D thread blocks

are tiled to provide complete coverage of the query data. An exam-

ple tiling is shown in Figure 6. To accomplish this tiling the hybrid

method uses a thread grid of p × q thread blocks, where p and q
are integers. Each thread block is composed of k × j threads and
spans 2k columns and j rows, where k and j are integers. With this

layout, each thread block can use the maximum of 1024 threads per

thread block.

A single thread block in the hybrid process performs the same

work as multiple ROA thread blocks stacked vertically. Using these

2-dimensional thread blocks provides the hybrid approach the ad-

vantages of both coalesced memory accesses of COA, and ROA’s

use of GPU shared memory to process the query along rows. The

disadvantage of the hybrid approach is that the lowest order column

of each thread block along the rows must undergo a second round

of the reduction process to obtain the final result of the range query.

This step combines the answers of the individual thread block tiles.

The hybrid process is shown in Algorithm 4 where the first round

of reductions are on lines 9-21 and the second round of reductions

are on lines 23-35.

Due to the architectural constraints of NVIDIA GPUs, the hybrid

design is limited to processing range queries of ≤ 2
22

bins. This

is far beyond the scope of typical bitmap range queries and GPU

memory capacities. Given a range query ofm bins, each withn rows,
a systemword size ofw , andk thread blocks needed to span the bins,
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m-3 m-2 m-1 m

System
word
(1 row)

3n-3

Low-order High-order

Threads performing OR operation
Results saved in low-order words

Thread
grid

Thread
block

Thread block

2n-31n-30n-3

0 1 2 3

3n-22n-21n-20n-2

3n-12n-11n-10n-1

3n2n1n0n

Figure 6: The data access pattern and reduction work per-
formed by each hybrid thread block within tiles (thread
blocks). In standard scenarios each thread block would com-
prise 1024 threads.

up to (m + k) nw global memory reads and (k + 1) nw global memory

writes are performed. Although the hybrid approach requires more

global memory reads and writes than the ROA approach, its use of

memory coalescing can enhance the potential for computational

throughput.

The theoretical expressions for global reads and writes imply

that an “ideal” hybrid layout is one where a single thread block of

k × j threads spans all 2k columns. Multiple k × j thread blocks are

still used to span all of the rows. This layout limits the number of

global writes in the first round to 1 and removes the need to perform

the second reduction between thread blocks along rows. The ideal

layout thereby reduces the number of global memory reads and

writes to
mn
w and

n
w , respectively. These are the same quantities

obtained for ROA, but the ideal hybrid method guarantees a higher

computational throughput as each k × p thread block has 1024

threads.

3.2 Multi-Core CPU Method
For an experimental baseline, we created a CPU-based parallel algo-

rithm for processing range queries. Most multi-core CPUs cannot

support the number of concurrent operations needed to fully exploit

all of the available parallelism in WAH bitmap query processing.

For this reason, we limited the CPU algorithm to a COA style reduc-

tion approach with the difference that compressed columns pairs

are processed sequentially (similar to the method outlined at the

beginning of this Section.)

Given an np-core CPU, this method uses OpenMP [13] to execute

up tonp parallel bitwise operations on paired compressed bit vectors

Algorithm 4 Hybrid (tiled) query processing

1: procedure hybrid(Cols ,p,q)
2: ▷ Cols is a collection of decompressed bit vectors
3: ▷ p is the number of tiles in the x-dimension
4: ▷ q is the number of tiles in the y-dimension
5:

6: m ← |Cols | ▷m is the number of bit vectors in the query
7: n ← |Cols0 | ▷ n is the number of words in a bit vector
8: ▷ First set of loops performs reductions within tiles
9: for rb ← 0 to n/q − 1 in parallel do
10: for t ← rb ∗ n/q to (rb + 1) ∗ n/q − 1 in parallel do
11: s ←m/(2 ∗ p)
12: while s >= 1 do
13: for c ← 0 to s − 1 in parallel do
14: c1← Colsc
15: c2← Colsc+s
16: c1t ← c1t

∨
c2t

17: end for
18: s ← s/2
19: end while
20: end for
21: end for
22: ▷ Second set of loops performs reductions across tiles
23: for rb ← 0 to n/q − 1 in parallel do
24: for t ← rb ∗ n/q to (rb + 1) ∗ n/q − 1 in parallel do
25: s ← p/2
26: while s >= 1 do
27: for c ← 0 to s − 1 in parallel do
28: c1← Colsc
29: c2← Colsc+s
30: c1t ← c1t

∨
c2t

31: end for
32: s ← s/2
33: end while
34: end for
35: end for
36: return Cols0
37: end procedure

for any reduction level. If more than np bit vector pairs exist in

a given reduction level, the CPU must iterate until all pairs are

processed and the reduction level is complete. The range-query

result is obtained once the final reduction level is processed. The

pattern of the CPU reduction process is similar to the COA pattern

shown in Figure 4a.

4 EVALUATION METHODOLOGY
In this section we explain the testing methodology that was used

to yield our results. Our tests were executed on a machine running

Ubuntu 16.04.5 LTS. It is equipped with dual 8-core Intel Xeon

E5-2609 v4 CPUs (each at 1.70 GHz) and 322 GB of RAM. All CPU

tests were written in C++ and compiled with GCC v5.4.0. All GPU

tests were developed using CUDA v9.0.176 and run on an NVIDIA

GeForce GTX 1080 with 8 GB of memory.
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The following data sets were used for our evaluation. They are

representative of the type of applications (e.g., scientific, mostly

read-only) that would benefit from bitmap indexing.

• KDD – this data set was procured from KDD Cup’99 and cap-

tures network flow traffic. The data set contains 4, 898, 431

rows and 42 attributes [25]. Continuous attributes were dis-

cretized into 25 bins using Lloyd’s Algorithm [26], resulting

in 475 bins.

• linkage – contains anonymized records from the Epidemio-

logical Cancer Registry of the German state of North Rhine-

Westphalia [31]. This data set contains 5, 749, 132 rows and

12 attributes. The 12 attributes were discretized into 130 bins.

• BPA – contains measurements reported from 20 synchropha-

sors deployed over the Pacific Northwest power grid over

approximately one month [7]. Data from all synchrophasors

arrive at a rate of 60 measurements per second and are dis-

cretized into 1367 bins. There are 7, 273, 800 rows in this data

set.

• Zipf – a synthetic data set generated using a Zipf distribu-

tion. A Zipf distributions represent a clustered approach to

discretization. In this process, the density of data is repre-

sented in the bitmap, creating a skewed distribution. The

Zipf distribution generator assigns each bit a probability

of: p(k,n, skew) = (1/kskew )/
∑n
i=1(1/i

skew ) where n is the

number of elements determined by cardinality,k is their rank,
and the coefficient skew creates an exponentially skewed

distribution. We set k = 10, n = 10, and skew = 2. This

generated a data set containing 100 bins (i.e., ten attributes

discretized into ten bins each) and 32 million rows.

For each of the four data sets, we use the GPU based range-

query methods described in Section 3.1 (i.e., COA, ROA, hybrid,
and ideal hybrid) as well as the reference CPU method described

in Section 3.2 to execute a range query of 64 random bit vectors.

This query size is sufficiently large that there is negligible variation

in execution time when different bit vectors are selected. We also

conduct a test where query size is varied. For this test we use the

highest performing CPU and GPU methods to query all data sets

using 4,8,16,32, and 64 bins.

When using the GPU methods, we use the maximum number of

threads per thread block (32 for ROA and 1024 for the others) and

the maximum possible number of thread blocks per thread grid for

the problem at hand. When using the reference CPU method, we

conduct multiple tests using 1, 2, 4, 8, and 16 cores.

Each experiment was run six times, and the execution time of

each was recorded. To remove transient program behavior, the

first result was discarded. The arithmetic mean of the remaining

five execution times is shown in the results. We use the averaged

execution times to calculate our comparison metric, speedup.

5 RESULTS
Here we present the results of the experiments described in the

previous Section, by data set first. We then focus on comparing

the highest performing CPU results to the results of the three

GPU method described in Section 3.1 and finally on the relative

performance of only the GPU methods.

Results for all tests, organized by data set, are shown in Figure 7.

CPU range query performance improves with additional cores for

every data set.The GPU methods outperform the CPU method in

95.3% of the tests with an average speedup of 30.22×. Further, the

GPU methods are capable of providing a maximum speedup of

87.7× over the CPU method. On average, the GPU methods provide

11.45×, 20.23×, 28.96×, and 1.45× speedup for the BPA, linkage,

Zipf, and KDD data sets, respectively.
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Figure 7: Speedups (vertical axes) for the GPUmethods com-
pared to the CPUmethod (using the number of cores shown
in the legend) grouped by theGPU range querymethod (hor-
izontal axes). The horizontal dashed line indicates a speedup
of 1×. All plots share the same legend.

A comparison of the GPU methods to the highest performing

CPU (16 core) tests is shown in Figure 8A. On average, the GPU

methods provide 5.64× speedup over the CPU when using 16 cores.

The KDD data set is the only instance where the GPU methods do

unanimously outperform the CPU method using 16 cores. In this

scenario, only the ideal hybrid GPU approach provides a speedup

that is > 1 (1.002×). Despite this, the average speedup provided by

the ideal hybrid method over the CPU using 16 cores is 6.67×.

Speedups provided by the COA, hybrid, and ideal hybrid GPU

methods relative to the lowest-performing GPU method (ROA) are

shown in Figure 8B. For these tests, the COA and hybrid methods

always outperform the ROA method, with the hybrid methods pro-

viding the most significant performance improvement over ROA.

On average, the COA, hybrid, and ideal hybrid methods provide

21.08%, 37.67%, and 48.54% speedup over the ROA method, respec-

tively.

We explored the effects varying query sizes had on our algo-

rithms using the CPU method (16 cores) and the ideal hybrid GPU

method. These results are shown in Figure 9. GPU execution times

are relatively consistent compared to the CPU times which grow at
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(A) (B)

Figure 8: A) Speedups for all GPU methods vs the CPU
method using 16 cores. The horizontal dashed line indicates
a speedup of 1×. B) Percent speedups for the GPU COA, hy-
brid, and ideal hybrid methods relative to the ROA method.
A speedup of 1× is a percent speedup of zero.

a faster rate. For varied query size, the GPU method outperforms

the CPU method by a factor of 6.44×, on average.
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Figure 9: Average execution times for the CPU method us-
ing 16 cores (solid lines) and the ideal hybrid GPU method
(dashed lines) by query size.

6 DISCUSSION OF RESULTS
Using a general (not related to bitmaps) benchmark suite of opti-

mized GPU and optimized CPU programs, Intel found that GPUs

outperformed CPUs by 3.5× on average [24]. The 6.67× speedup of

the ideal hybrid method (Section 5) compared to the parallel CPU

method using 16 cores aligns well with expectations.

For these tests, a major factor determining GPU performance is

the degree of the data set’s column compression. This behavior is

shown in Figure 10 and is most consequential for tests using the

KDD data set, which is the only data set where the GPUmethods do

not always outperform the CPU method. This only occurs when the

CPUmethod is used with 16 cores. The relatively high-performance

of the CPU method is entirely due to the highly compressed na-

ture of the KDD data set. The branch prediction and speculative

execution capabilities of the CPU allow enhanced performance

over GPUs when querying highly compressed bit vectors as GPUs

have no such branch predictors and do not benefit from bitmap

compression beyond storage efficiency. The remaining data sets did

not exhibit the same degree of compression, thereby reducing CPU

performance and enhancing GPU speedup. Further, when data sets

are less compressible, there is greater variance in the performance

of the GPU methods. This is apparent in the variation in speedup

results across the GPU methods in Figure 10, where there is less

variation for highly compressible data sets and more variation for

less compressible data sets.
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Figure 10: Average GPU speedup vs. data set compression
ratio (compressed size / uncompressed size). The horizontal
axis is logarithmically scaled.

When varying query size, we find the ideal hybrid GPU method

provides a consistent performance enhancement over the parallel

CPU method. The relatively consistent results for the GPU in this

test are due to the massively parallel nature of our algorithms. As

the majority of the processing happens in parallel, the additional

cost of adding columns is negligible. The one data set where a

difference in GPU speed can be observed is Zipf. The variance is

likely due to additional contention for memory resources as Zipf

has over 4× the number of rows than the next biggest data set

Each of our GPU methods can take advantage of certain GPU

architectural features due to their differing data access patterns.

These differencesmake eachGPUmethod suited for particular types

of queries. A listing of architectural advantages, disadvantages, and

ideal queries is provided in Table 2.

An example of query suitability is apparent in our test results.

In our tests, the ROA method is consistently outperformed by the

COA method. This occurs because we limit our tests to queries of

64 columns, thereby limiting ROA thread blocks to 32 threads, far

below the potential 1024 thread limit. The consequences of this are

severely limiting benefits from using shared memory and reduced
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Table 2: Advantages, disadvantages, and ideal query application for all GPU methods.

Method Advantages Disadvantages Ideal Queries

Memory

Coalescing

Shared

Memory

Extra Global

Memory Accesses

Limited

throughput

COA ✓ ✓ Point

ROA ✓ ✓ Range, where 2048 ≥ columns > 1024

Hybrid ✓ ✓ ✓ Range, where columns > 2048

Ideal Hybrid ✓ ✓ Range, where columns ≤ 1024

computational throughput of each thread block. For larger queries

(≤2048 columns), the ROAmethod could potentially outperform the

COAmethod due to increased computational throughput. However,

such queries are not commonly encountered in practice.

7 RELATEDWORK
There has been a significant amount of research conducted in the

area of bitmap indices and their compression. The work presented

in this paper is concerned with the widely adopted WAH [39]

bitmap compression scheme. However, there are many similar

techniques. One of the first hybrid run-length encoding schemes

was Byte-aligned Bitmap Compression (BBC) [3]. BBC uses byte-

alignment to compress runs and which, in certain cases, allows it to

achieve greater compression than other compression schemes [39].

This increase in compression often is achieved at the expense of

query times. For this reason many of the recent encoding schemes

(e.g., [10, 11, 14, 17, 20, 36, 41]) use system word alignment. We

believe that many of the bitmap-compression schemes could realize

significant query speed-up by employing similar parallel algorithms

as presented in this paper.

Previous works have explored parallel algorithms for bitmaps

indices. Chou et al. [9] introduced FastQuery (and several later

augmentations, e.g. [15, 42]) which provides a parallel indexing

solution that uses WAH compressed bitmap indices. Su et al. [32]

presented a parallel indexing system based on two-level bitmap

indices. These works focused on generating the bitmaps in par-

allel and not necessarily the parallel processing of actual bitwise

operations, nor did they implement their algorithms for GPUs.

With CUDA, GPUs have exhibited a meteoric rise in enhancing

the performance of general-purpose computing problems. Typically,

GPUs are used to enhance the performance of core mathematical

routines [16, 33, 34] or parallel programming primitives [6, 27] at

the heart of an algorithm. With these tools, GPUs have been used to

create a variety of high-performance tools, including computational

fluid dynamics models [4, 28], finite element methods [37], and

traditional relational databases [5].

Several researchers have explored using hardware systems other

than standard CPUs for bitmap creation and querying. Fusco, et

al. [18] demonstrated that greater throughout of bitmap creation

could be achieved using GPU implementations over CPU implemen-

tations of WAH, and a related compression scheme, PLWAH [14].

Nguyen, et al. [29] showed that field-programmable gate arrays

(FPGAs) could be used to create bitmap indices using significantly

less power than CPUs or GPUs. These works did not explore query-

ing algorithms. Haas et al. [21] created a custom instruction set

extensions for the processing of compressed bitmaps. Their study

showed that integrating the extended instruction set in a RISC

style processor could realize more than 1.3× speedup over an Intel

i7-3960X when executing WAH AND queries. Their study did not

investigate parallel solutions.

Other works have developed systems that use GPUs to answer

range queries using non-bitmap based approaches. Heimel and

Markl [22] integrated a GPU-accelerated estimator into the opti-

mizer of PostgreSQL. Their experiments showed that their approach

could achieve a speedup of approximately 10× when compared to a

CPU implementation. Gosink et al. [19] created a parallel indexing

data structure that uses bin-based data clusters. They showed that

their system could achieve 3× speedup over their CPU implementa-

tion. Kim et al. [23] showed that their massively parallel approach

to R-tree traversal outperformed the traditional recursive R-tree

traversals when answering multi-dimensional range queries. Our

work focuses on increasing the efficiency of systems relying on

WAH compressed bitmaps.

The works of Andrzejewski and Wrembel [1, 2] are closest to the

work presented in this paper. They introduced WAH and PLWAH

compression and decompression algorithms for GPUs. Their de-

compression work details a parallel algorithm for a decompressing

a single WAH compressed bit vector. Our work builds upon their

approach so that n WAH compressed bit vectors can be decom-

pressed in parallel. Their work also examined parallel queries that

were limited to bitwise operations between two bit vectors. While

executing bitwise operations between two decompressed bit vec-

tors is obvious, Andrzejewski and Wrembel presented a parallel

GPU algorithm for such an operation between two compressed bit

vectors [2]. We explored range queries which require bitwise opera-

tions to be performed on sequences of bit vectors. As demonstrated

above, range queries provide an excellent application for exploiting

the highly parallel nature of GPUs.

8 CONCLUSION AND FUTUREWORK
In this paper, we present parallel methods for executing range

queries on CPUs and GPUs. All methods perform a reduction across

the queried bitmaps. To extract parallelism, the CPU and COA GPU

methods operate primarily along paired WAH bit vectors, the ROA

GPU method operates along rows (all of which are independent),

and the hybrid GPU method operates along multiple rows at once.

The GPU methods exploit the highly parallel nature of GPUs and

their architectural details to extract additional performance. These

include mechanisms to accelerate memory transfers (coalescing),

and the use of low-latency GPU shared memory.
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We conducted an empirical study comparing the GPU methods

to the CPU method. The results of our study showed that the GPU

methods outperform the CPU in 95% of our tests, providing a maxi-

mum speedup of 87.7× and an average speedup of 30.22×. When

compared to the highest performing CPU tests, the GPU methods

still provide an average speedup of 5.64× for queries of 64 bins and

6.44× for queries of 4, 8, 16, 32, and 64 bins. Our results also suggest

that the GPU WAH range query processing methods benefit from

data sets that have low compressibility.

We plan to pursue additional work regarding parameter space

of the hybrid method and subsequent performance. This includes

the effect of database characteristics, varying tile dimension, and

distributing tiles/queries across multiple GPUs. We also intend to

continue exploring means to accelerate bitmap query execution

using computational accelerators. In particular, we plan to use

non-NVIDIA GPUs and future generations of NVIDIA GPUs to

investigate additional means of enhancing bitmap query through-

put. We would also like to explore the feasibility of refactoring

other bitmap schemes such as roaring bitmaps [8] and byte-aligned

bitmap codes [3] to run on GPUs.
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