
Caching Support for RangeQuery Processing on Bitmap Indices
Sarah McClain Manya Mutschler-Aldine

Colin Monaghan David Chiu

Computer Science

University of Puget Sound

Tacoma, WA, USA

Jason Sawin Patrick L. Jarvis

Computer and Information Sciences

University of St. Thomas

St. Paul, MN, USA

ABSTRACT
Bitmaps are commonly used for indexing read-mostly data sets.

The range of an attribute is split into bins, where its values are

placed: bi j = 1 denotes the value of the ith tuple is in the jth bin,

and bi j = 0 otherwise. A number of query types can be decomposed

into the systematic application of boolean operators over sets of

bins. However, when bitmaps are high-dimensional, the overall

query-processing performance can deteriorate due to the increased

number of bins that participate per query.

We propose a caching framework that organizes, manages, and

integrates cached partial results to accelerate query processing on

high-dimensional bitmaps. We begin by showing that, to resolve

general complex disjunctive and conjunctive queries, the selection

of an optimal set of partial bitmap results is NP-complete. A restric-

tion on this problem to only consider consecutive bin sequences

(characteristic of common range and point queries) allows us to

solve it efficiently. The evaluation our caching system over sev-

eral workloads carried out on the TPC-H benchmark and a real

network-intrusion data set is presented.

KEYWORDS
Bitmap index, caching, performance

1 INTRODUCTION
Praised for versatility and space-time efficiency, bitmaps [38] are a

common indexing scheme that have found their way into modern

data-management applications, including scientific analysis [23, 26,

35, 36], databases and data warehouses [19, 29, 34], information

retrieval [14, 27], data streams [15, 30], among others. A bitmap

index, essentially a sparse 2D array containing a binary representa-

tion of the underlying database. To generate a bitmap, an attribute

is partitioned into multiple bins, with each bin representing a range

of values (or an atomic value) in the attribute domain. Either a 0

or 1 is assigned to the corresponding bin depending on whether a

row’s attribute falls in the bin’s range.

An example is shown in Table 1. The upper table presents a

portion of a relation, Solar Masses. The relation consists of two

attributes Star, which records a name, andM⊙ corresponds to the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8413-1/21/07. . . $15.00

https://doi.org/10.1145/3468791.3468800

star’s solar mass. The lower table presents a possible bitmap index

for Solar Masses. As the names recorded in Star are discrete, each

value is simply represented by a single bin (or bit-vector). For ex-

ample, the s0 bit-vector encodes α Orionis, s1 encodes R136a1, and
so on. Them bins in the bitmap represent ranges of possible solar-

mass values. Thus,m0 encodes solar-mass values from [0, 10),m1

encodes [10, 40),m2 encodes [40, 80),m3 denotes values in [80, 150)

andm4 represents [150,∞). During the so-called binning process,

each tuple from Solar Masses is converted a single row in the bitmap.

Consider tuple t2, as its Star value is R136a1 a 1 is placed in the s1.
The value of t2[M⊙] is 315, so a 1 is placed in them4 bit-vector and

the remainingm bit-vector are assigned a 0 in that row.

Solar Masses

Tuple_ID Star M⊙

t1 α Orionis 11

t2 R136a1 315

t3 ρ Cassiopeia 40

t4 Proxima Centauri .123

Bitmap of Solar Masses

Star M⊙
ID s0 s1 s2 s3 m0 m1 m2 m3 m4

t1 1 0 0 0 0 1 0 0 0

t2 0 1 0 0 0 0 0 0 1

t3 0 0 1 0 0 0 1 0 0

t4 0 0 0 1 1 0 0 0 0

Table 1: Example Relation and Corresponding Bitmap

Upon receiving a query, the bitmap-index processor first iden-

tifies the appropriate set of bit-vector participating in that query.

After applying the appropriate set of boolean operators across

those bit-vectors, a result-vector is obtained. For instance, to an-

swer a range query, σM⊙≥40(SolarMasses), we retrieve vectors

{m2,m3,m4} of the index and apply a boolean OR across them

to obtain the result-vector. A value of 1 in the ith position in the

vector indicates that the ith tuple should be fetched from disk.

Bitmap indices can be a very selective and efficient pruning mecha-

nism, given that the attributes have been sufficiently binned, and

higher cardinality (i.e., larger number of bit-vectors) assigned per

attribute generally increases selectivity.

While higher cardinality can reduce the response time of point

queries (in which a few isolated bit-vectors are selected and oper-

ated over), the cost of executing open-ended range queries may actu-

ally increase. To resolve a range query, it may require the sequential

processing of a large number of bit-vectors before a result-vector

https://doi.org/10.1145/3468791.3468800

SSDBM 2021, July 6–7, 2021, Tampa, FL, USA S. McClain, et al.

is obtained. This represents a significant overhead despite several

efforts toward improving range-query performance [28, 33, 39].

An effective method for reducing average query response time

is to intentionally cache query results for reuse in future query

resolution. Each result is stored alongside semantic metadata (such

as the query constraints) that describe its content. Subsequent

queries invoke the processor to examine the available metadata to

determine which cached results can be reused. Only the remainder

portion of the query must be dispatched for retrieval. This approach

is known as semantic caching, and it is an inspiration for this work.

The simple structure of bitmaps and their consistent processing

pattern make them particularly amenable to caching. Metadata for

each cached result-vector can be encoded simply with the start and

end bit-vector identifiers. Because result-vectors are themselves

consistent in format with the index’s bit-vectors, any result-vector

can be seamlessly included as part of another query using existing

bitmap operators. Additionally, bit-vectors can be maintained and

processed in a compressed format, thus reducing memory overhead.

This paper explores the integration of bitmap indices and a

caching framework in an existing bitmap-index processor that we

developed previously [18]. We focus on the nontrivial problem of

result-vector identification in the cache and present an optimal

algorithm for their retrieval. This paper makes the following con-

tributions:

• We integrate a semantic-caching inspired technique into an

existing bitmap-index processor. To the best of our knowl-

edge, this is a novel technique for accelerating bitmap sup-

ported query processing.

• We show that selecting the optimal number of result-vectors

to aid in the processing of an arbitrary query is NP-complete.

However, with a reasonable restriction on the type of cached

results, a provably-correct greedy algorithm can derive an

optimal solution in O(n logn), where n is the number of

cached results.

• We present a rigorous experimental study of our caching

framework applied to the well-known TPC-H and KDD-

Cup’99 benchmarks. In this study, our framework realized

workload depended speedups of approximately 2× to over

140× for moderate cache sizes.

2 BACKGROUND
In this section we first give background on bitmap indexing com-

pression and query processing, followed by an overview of the

semantic-caching paradigm.

Bitmap-Index Processing: As illustrated in Table 1, bitmap

indexes are generally sparse. There has been a myriad of compres-

sion schemes designed to exploit the sparseness of bitmap indices.

Many of these are variations of hybrid run-length compression, and

one of the classical approaches is called theWord-Aligned Hybrid

codes (WAH) [40]. We restrict our background description to WAH

due to the fact that most recent compression schemes were heavily

inspired by WAH.

WAH compresses each bit-vector (column) of the bitmap index

independently. It first partitions a bit-vector into consecutive 63-bit

sequences. Heterogeneous sequences (those that are not all 0’s or all

1’s) are encoded in literal atoms. Literal atoms are 64-bit words and

have the form: (f laд, literal). The f laд is the most-significant-bit

(MSB) of atom and it is set to 0, indicating the atom is a literal. The

remaining 63 bits, literal , record the heterogeneous sequence.

WAH compresses consecutive homogeneous sequences in fill

atoms. These atoms have the form (f laд,value, run_lenдth). The
f laд (the MSB) is set to 1 indicating the atom is a fill. The value bit
(second-MSB) encodes the homogeneous value of the sequences

being compressed (1 or 0). The remaining 62 bits are dedicated to

run_lenдth, which records the number of homogeneous sequences

being compressed.

WAH-compressed bit-vectors do not need to be decompressed to

query. When processing a point query of the form,X ◦Y = Z where

X and Y are compressed bit-vectors, ◦ is a bitwise logical operation

and Z is a result bit-vector, the WAH query processing algorithm

treats X and Y as stacks of atoms. The top atoms of X and Y are

popped off the stack and processed in an iterative fashion. Each

iteration of processing results in a new atom being added to Z or an

existing atom being updated. After an operand atom is completely

processed, which could take multiple iterations for fill atoms, the

next atom from the bit-vector is popped.

The WAH point query algorithm can easily be extended to

process range queries. A WAH range queries take the form Z =
X1 ∨X2 ∨ ...Xn where Xi is a WAH compressed bitmap bin that en-

codes attributes within the desired range and Z is the result vector

that will indicate the tuples that should be retrieved from disk. A

simple iterative algorithm is often employed to solve range queries.

First Z is initialized to X1, then Z ← Z ∨ X j is repeated for all j
such that 2 ≤ j ≤ n.

Due to the overhead of stack processing, the more compressed

the bit-vector operands are, the more efficient the query becomes.

Thus, a chief contributor to a bitmap’s efficiency in terms of query-

processing performance is the number of bins assigned to a given

search attribute. For example, suppose that we wish to index an

Income attribute, and just four bins are used to correspond with

the following ranges [0, 25K), [25K , 50K), [50K , 80K), and [80K ,∞).
Assume that the distribution of salaries is heavily skewed toward

the [50K , 80K) bin, resulting in a high volume of 1s in this column.

Any query within this bin does not stand to benefit due to low

selectivity. The natural solution to this problem is to increase bin-

cardinality, splitting high-volume regions into more bins with finer

granularity. The obvious tradeoff of high-cardinality binning is

the increased size of the bitmap. However, higher cardinality also

impacts the efficiency of range-query processing, in which the set

of bins in the selected range must be processed sequentially.

Semantic Caching: Independent of bitmaps, we give a brief

exposition of semantic caching, the technique from which we drew

inspiration for this work. On the surface, semantic caching [10, 22]

is a simple query optimization scheme in which query results are

cached, along with sufficient metadata for their identification, in

higher levels of memory. A subsequent query initially searches the

cache for results that might satisfy a subset of the desiderata. This

query to the cache is called the probe query. Based on what can be

retrieved from the cache, the original query may be realigned to

retrieve a smaller subset of data on disk (remainder query). Using

a simple example to demonstrate, suppose we have an Employees

Caching Support for RangeQuery Processing on Bitmap Indices SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

table on which the following workload is executed:

Q1 ← σsalary≥80000(Employees)

Q2 ← σsalary≥40000(Employees)

Note that Q1 contains a subset of results requested for in Q2, and

therefore, Q2 can be decomposed into a union of two terms:

Q2 ← Q1 ∪ σsalary≥40000∧salary<80000(Employees)

where the latter σ -term is the remainder query of Q2, which will

be dispatched to the query processor for execution. Assuming the

results for Q1 can be identified quickly in a cache, the execution of

Q2 may be greatly accelerated.

In this paper, we study the performance benefits afforded through

the unification of bitmap indices and a scheme based loosely on

semantic caching. In the section that follows, we formalize the

result-vector selection problem and present algorithms that solve

or approximate the solution.

3 CACHE-ENABLED BITMAP PROCESSOR
In this section, we first describe the overall architecture of our

caching framework, then we formalize the result-vector selection

problem, and later, its restricted counterpart, which we will solve.

3.1 System Overview
For this study, bitmap processor considers ors-of-ors and ands-of-ors

queries.
1
Specifically, let B = {1, ...,m} denote a set of bit-vector

identifiers, and a bit-vector bi (i ∈ B) is stored on disk. Our query

processor can solve queries of the form:

Q1 ◦ Q2 ◦ ... (1)

where each Qk is a query segment, defined as a set of bit-vectors

identified in B and is processed iteratively using disjunction:

∨
b

for all b ∈ Qk , and ◦ is a conjunction (∧) or disjunction (∨) op-

erator. Consider the following query: {2, 3} ∧ {5, 8, 9, 10}. The

processor decomposes this query into query segments {2, 3} and

{5, 8, 9, 10}. Corresponding bit-vectors are retrieved for each query

segment, and processed using disjunction. For example, (b2 ∨ b3)
and (b5 ∨ b8 ∨ b9 ∨ b10) will be processed independently, and

their results are combined with ∧.

Our system reduces the overhead of query processing by main-

taining a cache of query segment results. Figure 1 illustrates the

high-level view of our cache-enabled bitmap processor. Given a

query, the system dispatches each segment as a unit of execution.

On the left, the cache stores a set of result-vectors from previous

query segments. Each result-vector associates with the query seg-

ment (shown as ovals) from which it was derived. Note that some

query segments may overlap. On the right, the full bitmap index is

initially stored on disk: one file per bit-vector.

On receiving a probe query, the cache runs a result-vector selec-

tion routine to identify a set of result-vectors R′. The bit-vectors
that the probe query could not cover with the fetched result-vectors

comprise the remainder query. The remainder vectors (i.e., the set

of bit-vectors that satisfy the remainder query) are fetched and

processed using disjunction. Finally, the result-vectors and the re-

mainder vectors are merged into a single result-vector representing

1
This supports the class of both point queries and range queries.

Cache
(Result Vectors)

Index
(Bit-Vectors)Probe Remainder

Result-vector selection Remainder vectors

Query Segment
Dispatch

Coalesce

Write to cache (Result vector)

Figure 1: Overview of the Bitmap Processor

the result for that query segment, and this result-vector is cached.

This process is repeated for all query segments, and their results

are combined using ◦. Finally, the combined result is used to fetch

candidate tuples on disk and is then cached.

While the overall cache framework is rather intuitive, the chal-

lenge lies in the result-vector selection routine. We are interested

in finding the fewest result-vectors that cover the largest number

of bit-vectors requested by a query segment. The minimal set of

result-vectors is desirable because they will be iteratively coalesced

in the formation of the query-segment solution.

3.2 Problem Statement
The successful execution of a query segment produces a result-

vector that can be cached. Let R = {1, ...,n} be a set of identifiers for
all result-vectors cached by prior queries. For some j ∈ R, Qr

j ⊆ B

denotes the set of bit-vectors used to derive result-vector j . Given a

subset R′ ⊆ R of result-vectors, we define the coverage of R′ with
respect to query segment Q as follows,

cov(Q,R′) =

{
−∞, if |(∪j ∈R′Q

r
j) \Q | > 0

|Q ∩ (∪j ∈R′Q
r
j)|, otherwise

(2)

Specifically, cov(Q,R′) is the number of Q’s bit-vectors that the
result-vector j (∀j ∈ R′) represents. Note that R′ provides −∞
coverage ofQ if any of its result-vectors were derived by bit-vectors

exceeding the boundaries of Q . For instance, consider a cache that

contains only two result-vectors x andw whereQr
w = {11, . . . , 50}

and Qr
x = {1, . . . , 40}. If the query segment Q = {5, . . . , 100}

is currently being requested, then cov(Q,R′) = 50 if R′ = {w}
is returned. It follows that cov(Q,R′) = −∞, when R′ = {x} or
R′ = {w,x} is returned.

The result-vector selection problem is defined as follows. Given a

query segment Q and a set of result-vector identifiers R, we wish

SSDBM 2021, July 6–7, 2021, Tampa, FL, USA S. McClain, et al.

to find an optimal subset of result-vector identifiers R∗ ⊆ R such

that cov(Q,R∗) is maximized, subject to:

|R∗ | =min {|S |},∀ S ⊆ R (3)

In other words, we wish to determine a subset of result-vector

identifiers R∗ ⊆ R with minimal size that produces the maximal

coverage of Q .

Definition
R Set of all cached result-vector identifiers

R′ Set of cached result-vector identifiers (R′ ⊆ R)
returned by the result-vector selection routine

R∗ Optimal set of cached result-vectors identifiers

(R∗ ⊆ R) for a given query segment.

B Set of all bit-vector identifiers

Q Query segment (Q ⊆ B)

Qr
j Query segment associated with the jth result-

vector

Q1 ◦ Q2 ◦ ... A query, i.e., a logical operations applied to a

sequence of query segments.

cov(Q,R′) Number of bit-vectors requested by query seg-

ment covered by R′

Table 2: Notation Reference

3.3 Proof of NP-Completeness
In this subsection, we show that the result-vector selection problem

is NP-Complete. In order to demonstrate its hardness, we must first

re-cast it to a decision-based variant. In this variant, we are given a

query segment Q and a set of result-vector identifiers, an integer

k ≥ 1, and an integer v ≥ 0. We wish to decide whether there

exists a subset R∗ ⊆ R whose coverage cov(Q,R∗) = v and |R∗ | ≤ k .
Formally, we define the language RES_VEC as follows,

RES_VEC ={⟨Q,R,k,v⟩ :

Q is a set of integer bit-vector identifiers,

R is a set of integer result-vector identifiers,

k ≥ 1 and v ≥ 0 are integers,

∃ R∗ ⊆ R : cov(Q,R∗) = v and |R∗ | ≤ k} (4)

Note that our original optimization problem is a special case of

REC_VEC . Recalling that |Q | ≤ m and that |R | = n, one would

only need to test all pairs {(k,v) : 1 ≤ k ≤ n ∧ 1 ≤ v ≤ m} to
determine whether the optimal solution R∗ exists. As there are at
mostmn pairs to test, the problem transformation only induces an

additional polynomial factor of running time, so it does not change

RES_VEC’s complexity class.

Theorem 3.1. RES_VEC ∈ NP .

Proof. To show that RES_VEC ∈ NP , we present the follow-
ing polynomial-time verifier. In addition to the problem inputs

⟨Q,R,k,v⟩, we further accept a certificate C ⊆ R representing a

subset of result-vector identifiers. The verification algorithm must

ensure that the following properties hold: C ⊆ R, C ≤ |k |, and
cov(Q,C) = v , −∞. Because the complexity of each check is

at-worst linear, we conclude that the verification algorithm runs in

polynomial time, and therefore RES_VEC ∈ NP . □

Next we show that the RES_VEC problem is NP-hard via reduc-

tion from the set cover problem.

Theorem 3.2. RES_VEC is NP-hard.

Proof. We consider the well-known NP-complete problem

SET_COVER [21], stated as follows. Given a set of positive integers

U and a set of sets S = {s | s ⊆ U }, SET_COVER decides whether

there exists a subset S ′ ⊆ S of cardinality c , such that the union of

all sets in S ′ = U .

The SET_COVER ≤p RES_VEC reduction is straightforward.

We assign the query segment Q to be the set of positive integers

U . The cardinality constraint k is assigned with c , and the minimal

coverage constraint v is assigned with |U | to ensure that the union

of all identified subsets must contain |U | elements. The set of result-

vector identifiers R is prepared by associating each subset s ∈ S
with an identifier j > 0, that is, R ← {j | 1 ≤ j ≤ |S |}. Finally, the
queriesQr

j are assigned the corresponding subset sj . This reduction

can be performed in polynomial time, and therefore RES_VEC is

NP-hard. □

Theorem 3.3. RES_VEC is NP-complete.

Proof. Because Theorems 3.1 and 3.2 hold on RES_VEC , we can
conclude that RES_VEC is NP-complete. □

Given the hardness of the result-vector selection problem, we decided

to focus on solving a restricted version, described next.

3.4 Problem Restriction and Solution
The result-vector selection problem is posed in a way as to provide

support for compound database queries satisfying multiple condi-

tionals. And though the problem is computationally prohibitive to

solve, we observe that a compound query can often be decomposed

into the successive resolution of simpler queries, in which the query

segments are of the form, bc ∨ bc+1 ∨ . . . ∨ bc+d where bi ∈ B and

c and d are integers such that 1 < c < d . In other words, query

segments must be a sequence of consecutive bit-vectors. Results of

a compound query can then later be reconstructed through a com-

bination of these simplified query results. We define this restricted

version of the result-vector selection problem as the range-restricted

result-vector selection problem. Given a query segment Q and a set

of result-vector identifiers R, we wish to find an optimal subset of

result-vector identifiers R∗ ⊆ R such that cov(Q,R∗) is maximized,

subject to: |R∗ | = min {|S |},∀ S ⊆ R. In other words, we wish to

determine a subset of result-vector identifiers R∗ ⊆ R with minimal

size that produces the maximal coverage of Q .
With the slight restriction that the cache result-vectors must be

derived from consecutive bit-vectors, we can define a polynomial-

time solution for the selection problem. To aid in our discussion we

are adding the following notation: let j be a result-vector identifier,
under the above restriction that Qr

j must be consecutive sequence

of bit-vector identifiers, we denote j .startId as the lowest valued

identifier in this range and j .endId as the highest value.

In Figure 2 we demonstrate MaximizeCoverage using an exam-

ple. Suppose the result-vectors A . . .G are stored in the cache. The

rectangle at the bottom of the figure represents the queried range.

Caching Support for RangeQuery Processing on Bitmap Indices SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

Algorithm 1MaximizeCoverage

1: Input
2: Q the query segment, Q ⊆ B
3: R the set of result-vector identifiers

4: Output
5: R∗ an optimal set of result-vector identifiers

6: ▷ reduce search space (remove result-vectors with no coverage)

7: for all j ∈ R do
8: if cov(Q, {j}) = −∞ then
9: R ← R \ {j}

10: L← toList(R)
11: L← sortListByStartId(L)
12: ▷ remove subranges

13: i ← 0

14: while i < lenдth(L) − 1 do
15: if L[i].startId = L[i + 1].startId then
16: if L[i].endId ≥ L[i + 1].endId then
17: L.remove(i+1)

18: else
19: L.remove(i)

20: else if L[i].endId ≥ L[i + 1.]endId then
21: L.remove(i+1)

22: else
23: i ← i + 1
24: ▷ remove vectors whose ranges do not change coverage

25: R∗ ← R
26: for i ← 1 to lenдth(L) do
27: if cov(Q,R∗ \ {L[i]}) = cov(Q,R∗) then
28: R∗ ← R∗ \ {L[i]}

29: return R∗

MaximizeCoverage will first remove subrange G because it is sub-

sumed by E. It scans left to right and fetches the result-vectors asso-
ciated with the ranges (highlighted in blue). After fetchingA andC ,
range B is initially retained. However, when D is encountered, its

endId extends beyond B, allowing us to drop it from consideration.

After the result-vector D is selected, the algorithm then inspects

every point p ∈ [D.startId + 1,D.endId] for any result-vectors that
have a startId = p and an endId > D.endId . Two result-vectors,

E and F , are identified as possibilities, and the algorithm selects

E since its end-point extends farther. In this particular example,

the fetched ranges A,C,D,E just happen to fully cover the queried

range, though that may not always be true. Any missing bit-vectors

not covered by partial solutions will have to be retrieved from disk.

B
C

D
E

F
G

Query Range
A

Figure 2: MaximizeCoverage Example

3.5 Optimality of MaximizeCoverage
The MaximizeCoverage (Algorithm 1) produces an optimal solu-

tion to range-restricted result-vector selection problem. The inputs

are Q , the query segment, and R, the set of cached result-vector

identifiers. The algorithm returns the optimal subset R∗ ⊆ R, where
cov(Q,R∗) is the maximum possible coverage of Q given R and

|R∗ | is the minimum number of result-vectors that can be used to

achieve this coverage. First, the algorithm removes all result-vectors

from R that extend past the bounds of Q (lines 7 to 9). The remain-

ing result-vector identifiers are put into a list and ordered by the

identifier of their starting column (lines 10 and 11). All subranges

are removed at line 13 to 23. A result-vector x is a subrange of a

result-vector y if x .startId ≥ y.startId
∧
x .endId ≤ y.endId .

Lemma 3.1. After R is restricted to result-vectors in bounds of Q ,
subranges are not required to build an optimal result-vector set for

the range-restricted result-vector selection problem.

Proof. We show subranges are not needed to construct an opti-

mal solution by contradiction. Assume that subranges are needed to

construct an optimal solution. Further assume,Q is a query segment,

R is the set of cached rages, and R∗ is an optimal solution such that

c = cov(Q,R∗) and n = |R∗ |. Let s be any subrange ∈ R∗, such that

s, t ∈ R and s is a subrange of t . Notice that both s and t cannot be in
R∗ since then s could be removed without loss of coverage, meaning

that if they were both included, n would not be minimal. However,

since cov(Q, {s, t}) = cov(Q, {t}), cov(Q, ((R∗ \ {s}) ∪ {t})) = c and
|(R∗ \ {s})

⋃
{t}| = n. This substitution can be performed for all

subranges in R∗, which contradicts the assumption that subranges

are needed to build an optimal set. □

At line 25, MaximizeCoverage initializes the return set to contain

all remaining result-vectors. Notice that at this point, cov(Q,R∗)
is guaranteed to be the maximal coverage that can be achieved

as R∗ contains all result-vectors that need to be considered. The

algorithm then iterates through all of the candidate result-vectors

in the order of their startId (lines 26 to 28). In each iteration, it

tests to see if removing the candidate result-vector reduces the

coverage of R∗. If coverage does change, the candidate vector is
kept, otherwise it is removed. In this manner all result-vectors that

uniquely cover a portion of Q are kept. If a portion of Q is covered

by multiple result-vectors, Maximize_Coverage takes the covering

vectors with the largest startId (which also must have the largest

endId since all subranges have been removed.)

Theorem 3.4. Maximize_Coverage produces an optimal solution

to the range-restricted result-vector selection problem.

Proof. Let R∗ = {r1, r2, . . . , rp } be a solution generated byMax-

imize_Coverage ordered such that:

ri .startId < ri+1.startId, ∀i : 1 ≤ i ≤ p − 1

Let O = {o1,o2, . . . ,om } be an optimal solution also ordered by

startId . The goal is to show that for R∗i ⊂ R∗ such that R∗i =
{r1, r2, . . . , ri } and Oi ⊂ O such that Oi = {o1,o2, . . . ,oi } that
∀i ≤ p : cov(Q,R∗i) ≥ cov(Q,Oi).

This can be shown through induction. Let i = 1 for the base case.

Since all the subranges have been removed, all of the startIds must

be unique. Thus r1 is the result-vector with the earliest startId in

SSDBM 2021, July 6–7, 2021, Tampa, FL, USA S. McClain, et al.

R and it must be included in the optimal set as it provides unique

coverage. Therefore, cov(Q,R∗
1
) ≥ cov(Q,O1).

For k > 1, assume the statement is true for k − 1 and we will

prove it for k . There are two cases to consider for rk : the first

case is when rk uniquely covers a portion of Q , meaning it is the

only result-vector in R that covers some part of Q . In this case

rk must be part of the optimal solution, and by the induction hy-

pothesis cov(Q,R∗k−1) ≥ cov(Q,Ok−1), thus, cov(Q,R
∗
k−1

⋃
rk) ≥

cov(Q,Ok−1
⋃
rk). The other case to consider is when rk is provid-

ing coverage for a portion of Q that is covered by multiple result-

vectors in R. In these cases, MaximizeCoverage takes the range with

the largest startId that covers the portion. Therefore, cov(Q,Ok)

could only be greater than cov(Q,R∗k) if ok had a larger endId ,
however that would imply ok .startId ≤ rk .startId

∧
ok .endId >

rk .endId , making rk a subrange of ok , but all subranges have al-
ready been removed. Therefore, cov(Q,R∗k) ≥ cov(Q,Ok).

The above proves that for all k ≤ i , cov(Q,R∗k) ≥ cov(Q,Ok).

If R∗ is not optimal, then it must be the case that m > p, and
cov(Q,Om) > cov(Q,R∗p). However, this leads to a contradiction

since we know through its construction that cov(Q,R∗p) is the max-

imum coverage that can be reached by any subset of R. Thus R∗

must be optimal. □

Due to the requirement that cached query result-vectors have

to be sorted, MaximizeCoverage runs on order of O(n logn). In
our implementation of MaximizeCoverage, we simplify the result-

vector filtering and ordering steps shown in line 7 to line 13 (algo-

rithm 1) through the use of a hash map data structure. This map’s

key-value pairs are of the form (bi , [ra1 , ra2 , ..., rat]), where bi ∈ B
and rax ∈ R ∧ rax .startId = bi . Simply put, this structure maps

bit-vector identifiers to a list of all cached result-vector identifiers

whose coverage starts at that column. Further overhead can be

eliminated by maintaining the result-vector lists in sorted order,

descending on endId (i.e., the result-vector to provides the most

coverage first). Though the use of a hash map makes the theoret-

ical asymptotic upper bound O(n2), in practicality, it reduces the

number of result-vectors that have to be investigated to only those

with startIds in the bounds of the query range while providing

near constant-time access to the result-vectors lists.

4 SYSTEM EVALUATION
This section presents a detailed experimental evaluation of our

caching framework. The caching structures and bitmap processor

were implemented in Java, and experiments were executed on a

machine running Windows 10 Pro, equipped with an 8-core Intel

Core i7-9700K at 3.60 GHz and 64 GB of RAM. Initially, we present

a detailed study into the TPC Benchmark H (TPC-H) [1]. This is

followed by a case study into a real intrusion-detection data set

that was the subject of KDDCup’99 [13].

4.1 TPC-H Data Characteristics
We used the TPC-H 2.18.0 toolkit to generate our data set and

workloads. The TPC-H database models an e-commerce organi-

zation spanning eight tables. We focused our experiments on the

lineitem table, which has 6M entries across 16 attributes, and it

plays a significant role in many of the benchmark’s queries. Within

the lineitem table, we indexed its SHIPDATE attribute because of
its high dimensionality and visibility in common queries. Accord-

ing to TPC-H documentation, the lineitem.SHIPDATE attribute

ranges from 1992-01-01 to 1998-12-31, spanning 2526 days. Its val-

ues are uniformly distributed. To produce our bitmap, we created a

bit-vector (column) for each day in the range, dropping a ‘1’ in the

column for a lineitem row that falls on a given date, and a ‘0’ in

all other columns. This process generates a sparse 1.89 GB bitmap

index containing 2526 columns and 6M rows.

Each bit-vector is independently compressed using the Word-

Aligned Hybrid Code (WAH) method [40], a commonly-used stan-

dard. Several properties of WAH are worth noting. It is well docu-

mented to excel when compressing highly sparse bitmaps. Inter-

estingly, WAH’s query-processing time decreases as function of its

compression ratio, so the more aggressively that bit-vectors can be

compressed, the faster that a boolean operation can be executed

across them. However, because SQL range queries decompose into

sequences of boolean OR operators across bit-vectors, as explained

earlier in Section 2, the 1-bits will accumulate in the (intermediate)

result, frequently disrupting the highly compressible long runs of 0s.

Therefore, long-sequences of OR queries may lead to a “ballooning

effect” on the size of result vectors: worsening query performance

and induces pressure on the storage of intermediate results.

4.2 Description of Workloads
We generated multiple workloads based on TPC-H query specifi-

cations, which describes a range query to be carried out over the

lineitem table.

• Long Confined Ranges (WL-tpch-q1) has 25000 queries

that select rows with a SHIPDATE as of a specified date:

σSH IPDAT E ≤ (1998/12/01−∆ days)(lineitem), where ∆ is ran-

domly chosen from [60, 120]. This query follows query “Q1”

exactly as described in TPC-H benchmark specifications. It

has very low selectivity; most bit-vectors participate in pro-

cessing each query, so cache-less execution is extremely slow.

The number of unique queries is very low due to the start

and end date restrictions, so results for all queries can easily

be cached without replacement.

• RandomLongRanges (WL-long-ranges) has 25000 queries
that select rows with a SHIPDATE between 1992/01/01 and

1998/12/31 inclusive. The interval between the start and end

dates is at least 1, 768 days, or 70% of available dates. The

miss penalty can be quite high, due to the average number

of participating bit-vectors. Due to the ballooning effect, we

anticipate that a low number of result-vectors can be cached,

triggering frequent replacement. The high range cardinality

also implies that the MaximizeCoverage search algorithm

would induce high overhead.

• RandomShortRanges (WL-short-ranges) executes 25000
queries that select rowswith a SHIPDATE between 1992/01/01
and 1998/12/31 inclusive. To increase selectivity, the start and

end dates are randomly chosen, but are restricted to within

30 days of each other. Very few bit-vectors participate in each

query, so the miss penalty is low. The number of uniquely

queried ranges is high, triggering cache replacement early

and often, which will in turn increase miss rate.

Caching Support for RangeQuery Processing on Bitmap Indices SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

• RandomMixedRanges (WL-mixed-ranges) executes 25000
queries that select rowswith a SHIPDATE between 1992/01/01
and 1998/12/31 inclusive. However, there are no range restric-

tions for medium selectivity. A mix of short-to-long ranges

coexist in this workload. The number of uniquely queried

ranges can also be quite high, triggering replacement. Cache

entries also vary wildly in size due to WAH’s ballooning

effect, potentially reducing the number of cacheable entries.

4.3 CLOCK Replacement Policy
After processing each query, we encapsulate the result with its start

and end date markers and cache it indiscriminately. That is, all re-

sults are placed in the cache, regardless of its corresponding query

coverage, size, or any other characteristic. To enforce fixed cache

sizes, we implemented the CLOCK replacement algorithm [8], be-

cause it famously incurs very little overhead, while approximating

the Least Recently Used (LRU) policy. CLOCK maintains a circular

list of cache entries that are either marked “hot” or “cold.” Upon

invocation, a pointer traverses through the entries in clockwise

order, downgrading a hot entry to cold or evicting a cold entry (and

terminating) when encountered. An entry is marked “hot” again if

it is used at any point in time for servicing a query.

The CLOCK algorithm may be invoked several times to create

necessary space, evicting a number of cold entries. It is worth noting

that we also implemented several other well-known replacement

schemes, including Random, LRU, and least-frequently used (LFU),

but observed that CLOCK introduced the least amount of space-

time overhead while producing consistent results. In the interest of

space, we decided to limit all results to using CLOCK.

4.4 Experimental Results
In this subsection, we explore the speedup and limitations from

using the proposed caching scheme.

4.4.1 Performance Speedup. Table 3 shows the baseline total times

to process each of our workloads over the TPC-H data set without

caching any result-vectors for reuse. First, we describe the work

involved in cache-less workload processing. For a given query, its

range of bit-vectors are first retrieved from memory (or disk, upon

first encounter), and a boolean OR operation is iteratively executed

across these bit-vectors to form a result-vector. Once a bit-vector

has been read into memory, it will remain there for the remainder

of the workload.

The WL-tpch-q1workload requires the longest time to complete,

as it requires nearly all bit-vectors to be processed per query. This

workload took roughly 2.5 days of continuous execution, averaging

7.96s per query. The WL-long-ranges workload required nearly 2

days of processing, or 6.73s per query. Next, because its ranges were

restricted to no more than 30 days, the WL-short-rangesworkload
only required 0.017s on average per query, and it completed in just

over 7 minutes. Finally, the WL-mixed-ranges workload required

2.75s per query, and completed in 19.13 hours.

In the caching-supported runs, we fixed the cache capacity to

256mb, 512mb, 1gb, and 2gb. Larger caches were also examined, but

not shown due to minimal/diminishing gains in performance. The

CLOCK replacement scheme is run to ensure that these capacities

are not breached. Results for total workload processing time and

speedup are displayed in Tables 4 and Table 5, respectively.

Workload Total Time
WL-tpch-q1 199,022.7 s

WL-long-ranges 168,191.6 s

WL-short-ranges 429.2 s

WL-mixed-ranges 68,855.0 s

Table 3: Workload Processing Time: Cache-Less

Cache Capacity
Workload 256mb 512mb 1gb 2gb

WL-tpch-q1 158.0 s 158.0 s 157.7 s 158.0 s

WL-long-ranges 10521.6 s 7910.4 s 5754.8 s 4478.6 s

WL-short-ranges 208.0 s 185.6 s 171.3 s 167.84 s

WL-mixed-ranges 1253.8 s 781.4 s 582.5 s 481.9 s

Table 4: Workload Processing Time: With Caching

Cache Capacity
Workload 256mb 512mb 1gb 2gb

WL-tpch-q1 1514.2 × 1514.2 × 1517.5 × 1514.2 ×

WL-long-ranges 16 × 21.3 × 29.2 × 37.6 ×

WL-short-ranges 2.06 × 2.31 × 2.50 × 2.56 ×

WL-mixed-ranges 54.91 × 88.12 × 118.22 × 142.88 ×

Table 5: Speedup over Cache-Less Execution

Unsurprisingly, the WL-tpch-q1 (the specified TPC-H Q1 work-

load) delivered hyperbolic gains, achieving over 1500× speedup,

as shown in Table 5. Increases in capacity have little to no impact

— due to the considerably low numbers of unique ranges queried,

all possible results are easily stored without replacement. In fact

we found that less than 1% of queries engage in any misses, and

once the cache has been filled with the 60 unique entries, all re-

maining queries are fully covered. Given the predictable nature of

WL-tpch-q1, and the unlikelihood that this best case scenario would
be commonly observed in practice, we will focus on the remaining

three workloads for the remainder of this paper.

The WL-long-ranges workload saw more realistic speedups.

The large gap injected between the start and end dates in this work-

load means that the potential for range overlap and reuse would be

limited, and a cache-miss in this workload would add more severe

penalties due to the average range size that require processing.

The WL-short-ranges workload was indeed representative of the

worst-case usage of our cache. Due to the shortness and randomness

of its ranges, there were more cache misses compared to the other

workloads. Moreover, because this workload’s cache-less query pro-

cessing times were already fast, it was harder to extract significant

performance improvements. We also observe that, even though the

caches fill to capacity, increasing the cache capacity only results in

incremental gains. We explain this in the next subsection.

The WL-mixed-rangesworkload observes excellent speedup and
saw the most benefits from increasing the cache capacities. This

is due to the relaxing of date-range restrictions, as compared to

the previous workload. Result-vectors from resolving these queries

vary considerably in size, which causes the cache to reach capacity

SSDBM 2021, July 6–7, 2021, Tampa, FL, USA S. McClain, et al.

0 5000 10000 15000 20000 25000
Query ID

0

2000

4000

6000

8000

10000

To
ta

l T
im

e
(s

)

TPC-H (WL-long-ranges)

256mb
512mb
1gb
2gb

(a) Long Ranges Workload over TPC-H

0 5000 10000 15000 20000 25000
Query ID

0

50

100

150

200

To
ta

l T
im

e
(s

)

TPC-H (WL-short-ranges)

256mb
512mb
1gb
2gb

(b) Short Ranges Workload over TPC-H

0 5000 10000 15000 20000 25000
Query ID

0

200

400

600

800

1000

1200

To
ta

l T
im

e
(s

)

TPC-H (WL-mixed-ranges)

256mb
512mb
1gb
2gb

(c) Mixed Ranges Workload over TPC-H

Figure 3: Workload Processing Time (TPC-H)

quite early. This has the added effect of cache replacement also

being invoked early and often through the lifetime of the workload.

However, due to the diversity of the result-vectors, we observe a

significant amount of reuse.

Workload execution times are also tracked in more detail in

the Figure 3 plots. The horizontal axis denotes the queries in the

order in which they were dispatched and executed, and the ver-

tical axis tracks the accumulated execution time. The effective-

ness of a cache would be indicated by a steep climb (to fill the

cache initially), followed by a plateauing effect. Figure 3a plots the

WL-long-ranges running time, which steadily reduces (albeit at

a diminishing rate) given larger cache capacities. Speedups occur

only a few hundred queries into the workload, as the cache fills to

capacity relatively early. Next, Figure 3b shows the running time for

WL-short-ranges. After the initial climb to the plateau, the cache

reaches a sustained level of reuse at approximately the 250th query.

The remaining workload beyond that point continues to climb, but

only at a sublinear rate. The average cache entry is quite small in

this workload due to the smaller allowable range of the queries.

The separation in the four cache-capacity settings diminishes as the

capacities increase, due to the miss penalty being less significant in

this workload.

Finally, the total time for WL-mixed-ranges is shown in Fig-

ure 3c. Here, we can more clearly see the benefits from increasing

cache capacities, resulting in far more separation after the cache is

initially filled. This is because the common query in this workload

requires a medium to high number of bit-vectors to resolve. This

also implies that the average cache entry is likely quite large in this

workload due to the ballooning effect. Therefore, the miss penalty

in this workload is likely to be quite high on average.

4.4.2 Cache Misses and Penalties. In this subsection, we further

explore the caching behavior under each workload. The plots in

Figure 4 show the distribution of cache misses for all queries.

We define a partial miss in our cache to be the size of a remainder

query, i.e., the number of bit-vectors left uncovered after fetching

the cached entries. The partial miss rate for a query is defined as

|Q |− |Qr |
|Q | , whereQ is the queried set of bit-vector IDs, andQr

is the

set of bit-vector IDs covered by the fetched vectors. For instance,

suppose we were answering a query {4, 5, 6, 7, 8} and cached re-

sult vectors were found to form {5, 6, 7}, then this example would

constitute a 40% partial miss. Lower partial miss rates generally

correspond to lower miss penalty since fewer remainder bit-vectors

must be processed.

Figure 4 plots the cache miss distribution for the three workloads.

To avoid confusion, note that the horizontal axis in these plots is not

ordered on QueryID as before. For clarity, we sorted all queries in

descending order of its partial miss rate so that we can have a sense

of its distribution across the workload. A sharp and early descent for

this metric would therefore be highly desirable. The results in these

figures should be viewed concurrently with Figure 5, which shows

the query execution times over the number of columns missed in

the smallest cache capacity, 256mb.

The partial-miss distribution for WL-long-ranges is shown in

Figure 4a. The waterfall appearance in this figure is due to the long

query structure. This workload requires that the queries cover at

least 1,768 consecutive days, which means that as partial results are

cached, most of the cache misses are limited to a few columns at

the ends of the query sequences. This overlap leads to a high miss

rate for a limited number of queries, primarily when the cache is

cold, and a low miss rate for the majority of the others. Given the

remarkably low total miss rate, it is surprising that speedups in the

previous section were not more pronounced. Figure 5a gives us a

clue. We can see that the misses are concentrated in two regions.

The lower region, accounting for 93% of the queries involves few

remainder vectors, and thus, less miss penalty and execution time.

The performance limitation can be observed in the higher region,

which only accounts for 7% of misses. However, noting that the

vertical-axis is plotted in log-scale, we can clearly see the expo-

nential increase in query processing time as a function of columns

Caching Support for RangeQuery Processing on Bitmap Indices SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

0% 20% 40% 60% 80% 100%
Queries

100

80

60

40

20

0

%
 P

ar
tia

l M
iss

TPC-H (WL-long-ranges)

256mb
512mb
1gb
2gb

(a) Large Ranges Workload over TPC-H

0% 20% 40% 60% 80% 100%
Queries

100

80

60

40

20

0

%
 P

ar
tia

l M
iss

TPC-H (WL-short-ranges)

256mb
512mb
1gb
2gb

(b) Short Ranges Workload over TPC-H

0% 20% 40% 60% 80% 100%
Queries

100

80

60

40

20

0

%
 P

ar
tia

l M
iss

TPC-H (WL-mixed-ranges)

256mb
512mb
1gb
2gb

(c) Mixed Ranges Workload over TPC-H

Figure 4: Distribution of Partial Misses (TPC-H)

missed. Because the ranges are so long, the few queries with high

miss rates dominate total execution time.

The partial-miss distribution is flatter for WL-short-ranges (Fig-
ure 4b), where we observe a gentle decline. The abundance of short

ranges in this workload induce a significant number of full and

partial misses. Full misses constitute 12% of all queries in the 2gb

case, and up to 24.5% of queries in the 256mb cache. It only stabi-

lizes at 0% miss rate after a significant portion of the workload is

already processed (over 90% of the workload in the 256mb case).

It is interesting to see that increasing cache capacities does signifi-

cantly diminish the miss rates, but as we saw earlier in Figure 3, this

did not translate to appreciable performance speedup. Figure 5b

shows that, because the ranges are limited to intervals of 30 days,

0 500 1000 1500 2000
Columns Missed

0.01

0.1

1

10

100

1000

10000

100000

Q
ue

ry
 E

xe
c T

im
e

(m
s)

TPC-H (WL-long-ranges)

(a) Long Ranges Workload over TPC-H (256mb capacity)

0 5 10 15 20 25 30
Columns Missed

0.001

0.01

0.1

1

10

100

1000

Q
ue

ry
 E

xe
c T

im
e

(m
s)

TPC-H (WL-short-ranges)

(b) Short Ranges Workload over TPC-H (256mb capacity)

0 200 400 600 800
Columns Missed

0.01

0.1

1

10

100

1000

10000

Q
ue

ry
 E

xe
c T

im
e

(m
s)

TPC-H (WL-mixed-ranges)

(c) Mixed Ranges Workload over TPC-H (256mb capacity)

Figure 5: Query Time vs. Columns Missed (TPC-H)

difference in miss penalty is overall insignificant. This explains why

WL-short-ranges is unable to achieve over 2× speedup, but we

are careful to point out that a 2× speedup is still a significant result.

Figure 4c shows the partial-miss distribution for WL-mixed-ranges,
in which we again observe steeper declines. This is due in part to

the blend of both shorter and longer ranges introducing more op-

portunities for reuse. The partial miss rate drops to near-zero levels

for the vast majority (70% to 80%) of queries in the workload. As

we see in the juxtaposition of Figure 5c, the number of missed

columns is concentrated toward the lower end, where we only see

miss penalties on the order of 100-1000ms, achieving more impres-

sive overhead speedup. The number of queries that required higher

execution time is very low compared to WL-long-ranges, which

SSDBM 2021, July 6–7, 2021, Tampa, FL, USA S. McClain, et al.

also saw fast drops in miss rates, but had far more limited speedup

in comparison.

4.4.3 Space-TimeOverhead. The space overhead is relatively straight-
forward, as we varied the cache capacities in all experiments. One

observation is that, especially in the WL-short-ranges workload,
the doubling of cache capacity leads to diminishing returns in per-

formance. Therefore, even a small cache could achieve impressive

benefits. “Right-sizing” the cache would be workload-dependent,

and could be a direction for future work.

Two dominant time overheads are search time (i.e., by running

the MaximizeCoverage algorithm) and replacement time, shown

in Figure 6. Figure 6a and Figure 6c show similar profiles for long

and mixed-sized range queries. The search time clearly dominates

replacement time in all cases. The slowdown in search time can be

traced back to the size of the search space under these workloads.

Given the larger search overhead, we emphasize that it is still

negligible (0.07% to 0.5% of the total execution time).

The WL-short-ranges (Figure 6b) differs quite drastically from

the previous two workloads. Here the replacement time constitutes

a significant overhead compared to the search time. Compared

to the previous workloads, the search time is also far less signifi-

cant. As the capacities increase, we can also observe an expected

amortization in total replacement time, as well as the search time

increasing corresponding to increases in cache capacity (Maximize-

Coverage search space). However, the search space is generally

quite small given the short ranges in this workload. Combined

overhead constitute only 0.02% – 0.06% of total execution time.

4.5 Case Study: kddcup99 Data Set
For our case study involving a real data set, we examine network in-

trusion data, which was subject of the KDDCup’99 competition, and

has been made publicly available via the UCI ML Repository [13].

The kddcup99 data contains 4, 898, 431 rows across 42 attributes.

We indexed 19 continuous attributes using bitmaps, and for each of

them, we discretized their values into 25 equal-depth bins, resulting

in a 475-column bitmap index.

Cache Capacity
32mb 64mb 128mb 256mb 512mb

2.09 × 2.48 × 2.63 × 2.86 × 2.96 ×

Table 6: Speedup over Cache-Less Execution (kddcup99)

For this case study, we were interested in exploring the worst

case, so a workload that is similar to WL-short-ranges was gen-

erated as follows: each query first randomly selects one of the

attributes, and within that attribute, we randomly choose a start

and an end column ID. Therefore the max size per range query is

25. For consistency with previous experiments, we also affixed the

size of this workload to 25, 000 queries, as before.

First, we examine the workload speedup over different cache

capacities. The cache-less execution of the kddcup99 workload

required 129.34s, and the speedups over the 25, 000 query workload

are listed in Table 6. The accumulated time results are shown in

Figure 7. Our experiments showed negligible gains after the 512mb

capacity, so we limit our results to the 32mb and 512mb range. As

can be seen, the speedup does tend to track WL-short-ranges in

0

500

1000

1500

2000

2500

To
ta

l O
ve

rh
ea

d
(m

s)

TPC-H (WL-long-ranges)

256mb 512mb 1gb 2gb

Re
pl

ac
em

en
t

Se
ar

ch

(a) Long Ranges Workload over TPC-H

0

20

40

60

80

100

To
ta

l O
ve

rh
ea

d
(m

s)

TPC-H (WL-short-ranges)

256mb 512mb 1gb 2gb

Re
pl

ac
em

en
t

Se
ar

ch

(b) Short Ranges Workload over TPC-H

0

500

1000

1500

2000

To
ta

l O
ve

rh
ea

d
(m

s)

TPC-H (WL-mixed-ranges)

256mb 512mb 1gb 2gb
Re

pl
ac

em
en

t
Se

ar
ch

(c) Mixed Ranges Workload over TPC-H

Figure 6: Caching Overhead (TPC-H)

0 5000 10000 15000 20000 25000
Query ID

20

30

40

50

60

To
ta

l T
im

e
(s

)

kddcup99

32mb
64mb
128mb
256mb
512mb

Figure 7: Workload Processing Time (kddcup99)

Caching Support for RangeQuery Processing on Bitmap Indices SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

the TPC-H experiments, as we see gains in the 2 − 3× range and

observe diminishing returns with doubling capacity.

0% 20% 40% 60% 80% 100%
Queries

100

80

60

40

20

0

%
 P

ar
tia

l M
iss

kddcup99

32mb
64mb
128mb
256mb
512mb

Figure 8: Distribution of Partial Misses (kddcup99)

Partial-miss distribution of this data set and workload is shown

in Figure 8. Except for the smallest capacity (32mb), the miss rates

for all other settings fall rather precipitously, indicating a high rate

of reuse. This is probably due to the fact that firm boundaries exist

between kddcup99 attributes from which the query generator must

draw random start and end IDs. These boundaries were nonexistent

in TPC-H, because we had only indexed one attribute, giving the

query generator much higher degree of freedom in choosing the

start and end IDs.

0

10

20

30

40

50

To
ta

l O
ve

rh
ea

d
(m

s)

kddcup99

32mb 64mb 128mb 256mb 512mb

Replacem
ent

Search

Figure 9: Caching Overhead (kddcup99)

Finally, we show the overheads in Figure 9. The overheads are

insignificant as before, accounting for less than a fraction of a

percent of the cache-enabled execution times. Similar to what we

saw in the TPC-H WL-short-ranges result, search times tend to

grow only linearly as the cache size doubles, while the replacement

time diminishes due to fewer invocations given the larger capacities.

4.6 Summary of Results
Having rigorously stress-tested our caching framework using the

TPC-H benchmark and a real data set, we make several overarch-

ing conclusions. First, and least surprisingly, intentionally caching

results for systematic reuse is highly effective for accelerating

range queries over bitmaps. In the worst case, we observe a 2-

3 time speedup, while the average and best case workloads observe

speedup in the 100-1000 time factor over only a 25,000 query work-

load. Given that the function scales, the speedup would increase

given larger workloads.

Second, despite the result-vectors’ size “ballooning effect” over

large range queries, even modest cache capacities can achieve re-

spectable performance gains. We observed this perhaps most abun-

dantly in TPC-H’s WL-mixed-ranges experiment. Only a few 100

to 1000 entries could be stored because the average result-vector

size was high, invoking frequent replacement. Yet, we still observed

50× to 142× speedup even under heightened replacement pressure.

Finally, replacement and search overheads are negligible, even as

capacities and the number of entries undergo exponential growth.

Finally, an area where we might expect our cache to struggle more

is with short, random ranges with high miss penalties. In our ex-

periments such a workload observes higher (partial) miss rates.

However, in our data sets, the short ranges has also meant lower

miss penalty due to the sparseness of our index. We might expect

only extracting nominal speedup if the common bit-vector was not

sparse, increasing miss penalties, but such a phenomenon would

occur quite rarely in proper bitmap index setups.

5 RELATEDWORK
The use of cached intermediate results is a well-documented area in

query optimization. Chen and Roussopoulos presented the ADMS

optimizer, which used data and pointer caching of intermediate

results to aid in query processing [4]. Roy, et al. present several

heuristics which use cached results to increase the efficiency of

multi-query optimization [32]. Semantic caches were popularized

in distributed databases as a method to increase performance and

security in client-server systems [10, 22]. Dar, et al. proposed the

semantic-caching architecture, in which clients cache results lo-

cally [10]. The probe and remainder queries were also described as

those that would be posed to the client’s local cache, and if exists,

one to be the processed at the server. The authors also defined

semantic regions, which are used to inform on a replacement policy.

Godfrey and Gryz formalize the semantic relationships between

cache and query expressions, and give ways to express the seman-

tic existential, independence, overlapping, and remainder proper-

ties [16, 17]. These seminal works were followed by applications of

semantic caching in other distributed computing domains, includ-

ing data integration of web sources [6, 24] and mobile-computing

environments [25, 31]. Beyond the relational model, work on se-

mantic caching has also extended into other domains. For instance,

D’Orazio, et al. describe a semantic-cache enabled grid/cloud mid-

dleware for object retrieval [12]. XCache and XCacher both extend

semantic caching to XML databases and XQuery [5, 20].

The bitmap compression scheme considered in this paper is

WAH [40]. However, there are many other run-length compression

schemes explicitly designed for bitmap indices. One of the earliest

approaches was the Byte-aligned Bitmap Compression (BBC) [2]

which uses byte-alignment. There are many others are variations of

the word-aligned hybrid codes similar to WAH (e.g., [7, 11, 15, 41]).

Other schemes, like [9], [18], and [37] use variable word-alignment.

The approaches listed above have a more computationally complex

query algorithm than WAH. This increased overhead suggests that

SSDBM 2021, July 6–7, 2021, Tampa, FL, USA S. McClain, et al.

if these schemes were coupled with our caching approach, they

would experience similar to better speedups as WAH.

Several other works have investigated techniques to increase the

efficiency of range query processing using bitmap indices. Wu, et

al. [39] used a size ordered priority queue to sequence the column

processing of WAH and BBC compressed bitmap range queries.

Their empirical study showed that this approach requires less core

memory and often performed better than a random sequence of

column processing. Additionally, they explored an in-place query

algorithm, in which the largest column was decompressed and used

to start all intermediate results. This approach was shown to be

faster than the priority queue algorithm but required more memory.

Slechta, et al. [33] explored several similar column ordering tech-

niques for the range query processing of Variable-Aligned Length

(VAL) [18] compressed bitmaps. Their most efficient ordering ap-

proach was able to achieve 2× speedup over the randomly ordered

baseline. Nelson, et al. [28] presented several GPU based algorithms

for the processing of WAH range queries. They were able to achieve

an average of 30× speedup over a parallel CPU algorithm. To the

best of our knowledge, we are the first to use a result-vector caching

system to increase the efficiency of bitmap range queries.

6 FUTUREWORK AND CONCLUSION
In this paper we describe techniques for integrating a caching

scheme in a bitmap-processing system for accelerating range queries.

The system organizes, manages, and integrates partial results for

query processing. We considered the optimization problem of iden-

tifying the minimal number of result-vectors that offer the widest

range-query coverage, and presented an optimal algorithm to solve

this problem in a restricted form. An extensive system evaluation

was performed on various workloads and cache sizes, which demon-

strated its effectiveness in query performance.

In the future, we plan to work on static and dynamic right-sizing

of the cache to meet certain Quality of Service (QoS) constraints. We

would also like to support more general and complex query types

instead only ranges and point queries. We also plan to integrate

this caching framework with the distributed version of our bitmap

query processor, reported in [3], wherein we would expect even

greater speedup due to the potential for reducing data transfer.

REFERENCES
[1] 2021. TPC-H Decision Support Benchmark. http://www.tpc.org/tpch

[2] Gennady Antoshenkov. 1995. Byte-aligned bitmap compression. In Data Com-

pression Conference. IEEE, 476.

[3] Sam Burdick, Jahrme Risner, David Chiu, and Jason Sawin. 2018. Fault-Tolerant

Query Execution over Distributed Bitmap Indices. In International Conference on

Big Data Computing Applications and Technologies. 21–30.

[4] Chungmin Melvin Chen and Nicholas Roussopoulos. 1994. The Implementation

and Performance Evaluation of the ADMS Query Optimizer: Integrating Query

Result Caching and Matching. In International Conference on Extending Database

Technology. 323–336.

[5] Li Chen, Elke A. Rundensteiner, and Song Wang. 2002. XCache: A Semantic

Caching System for XML Queries. In ACM SIGMOD International Conference on

Management of Data. 618–618.

[6] Boris Chidlovskii and Uwe M. Borghoff. 2000. Semantic Caching of Web Queries.

The VLDB Journal 9, 1 (March 2000), 2–17.

[7] Alessandro Colantonio and Roberto Di Pietro. 2010. Concise: Compressed ’n’

Composable Integer Set. Inform. Process. Lett. 110, 16 (2010), 644–650.

[8] F. J. Corbato. 1968. A Paging Experiment with the Multics System. Technical

Report. Massachusetts Institute of Technology.

[9] Fabian Corrales, David Chiu, and Jason Sawin. 2011. Variable Length Compression

for Bitmap Indices. In Database and Expert Systems Applications. 381–395.

[10] Shaul Dar, Michael J. Franklin, Björn T. Jónsson, Divesh Srivastava, and Michael

Tan. 1996. Semantic Data Caching and Replacement. In International Conference

on Very Large Data Bases (VLDB ’96). 330–341.

[11] François Deliège and Torben Bach Pedersen. 2010. Position List Word Aligned

Hybrid: Optimizing Space and Performance for Compressed Bitmaps. In Interna-

tional Conference on Extending Database Technology (EDBT ’10). 228–239.

[12] Laurent d’Orazio, Fabrice Jouanot, Yves Denneulin, Cyril Labbé, Claudia Roncan-

cio, and Olivier Valentin. 2007. Distributed Semantic Caching in Grid Middleware.

In Database and Expert Systems Applications. 162–171.

[13] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:

//archive.ics.uci.edu/ml

[14] Kengo Fujioka, Yukio Uematsu, andMakoto Onizuka. 2008. Application of bitmap

index to information retrieval. In WWW. ACM, 1109–1110.

[15] Francesco Fusco, Marc Stoecklin, and Michail Vlachos. 2010. Net-Fli: On-the-fly

Compression, Archiving and Indexing of Streaming Network Traffic. VLDB 3, 2

(2010), 1382–1393.

[16] Parke Godfrey and Jarek Gryz. 1997. Semantic Query Caching for Hetereogeneous

Databases. In Intelligent Access to Heterogeneous Information. 6.1–6.6.

[17] Parke Godfrey and Jarek Gryz. 1998. Answering Queries by Semantic Caches. In

Database and Expert Systems Applications. 485–498.

[18] Gheorghi Guzun, Guadalupe Canahuate, David Chiu, and Jason Sawin. 2014. A

tunable compression framework for bitmap indices. In International Conference

on Data Engineering. IEEE, 484–495.

[19] hive [n.d.]. Apache Hive Project, http://hive.apache.org.

[20] Vagelis Hristidis and Michalis Petropoulos. 2002. Semantic Caching of XML

Databases. In 5th International Workshop on the Web and Databases. 25–30.

[21] R. Karp. 1972. In Complexity of Computer Computations. 85–103.

[22] Arthur M. Keller and Julie Basu. 1996. A Predicate-based Caching Scheme for

Client-server Database Architectures. The VLDB Journal 5, 1 (Jan. 1996), 035–047.

[23] Kesheng Wu, W. Koegler, J. Chen, and A. Shoshani. 2003. Using bitmap index for

interactive exploration of large datasets. In SSDBM. 65–74.

[24] Dongwon Lee and Wesley W. Chu. 1999. Semantic Caching via Query Match-

ing for Web Sources. In Proceedings of the Eighth International Conference on

Information and Knowledge Management (CIKM ’99). 77–85.

[25] Ken. C. K. Lee, H. V. Leong, and Antonio Si. 1999. Semantic Query Caching in a

Mobile Environment. SIGMOBILE Mob. Comput. Commun. Rev. 3, 2 (1999), 28–36.

[26] Ben McCamish, Rich Meier, Jordan Landford, Robert B. Bass, David Chiu, and Ed-

uardo Cotilla-Sanchez. 2016. A backend framework for the efficient management

of power system measurements. Electric Power Systems Research 140 (2016).

[27] Alistair Moffat and Justin Zobel. 1996. Self-Indexing Inverted Files for Fast Text

Retrieval. ACM Transactions on Information Systems 14 (1996), 349–379.

[28] Mitchell Nelson, Zachary Sorenson, JosephM.Myre, Jason Sawin, and David Chiu.

2019. GPU Acceleration of Range Queries over Large Data Sets. In International

Conference on Big Data Computing, Applications and Technologies. 11–20.

[29] Patrick E. O’Neil. 1989. Model 204 Architecture and Performance. In International

Workshop on High Performance Transaction Systems. 40–59.

[30] F. Reiss, K. Stockinger, K. Wu, A. Shoshani, and J. M. Hellerstein. 2007. Enabling

Real-Time Querying of Live and Historical Stream Data. In SSDBM.

[31] Qun Ren and Margaret H. Dunham. 2000. Using Semantic Caching to Manage

Location Dependent Data in Mobile Computing. In International Conference on

Mobile Computing and Networking. 210–221.

[32] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. 2000. Efficient

and Extensible Algorithms for Multi Query Optimization. In ACM SIGMOD

International Conference on Management of Data. 249–260.

[33] Ryan Slechta, Jason Sawin, Ben McCamish, David Chiu, and Guadalupe Canahu-

ate. 2014. Optimizing Query Execution for Variable-Aligned Length Compression

of Bitmap Indices. In IDEAS. 217–226.

[34] Kurt Stockinger and Kesheng Wu. 2006. Bitmap Indices for Data Warehouses. In

In Data Warehouses and OLAP. 2007. IRM. Press.

[35] Y. Su, G. Agrawal, J. Woodring, K. Myers, J. Wendelberger, and J. Ahrens. 2013.

Taming massive distributed datasets: data sampling using bitmap indices. In

Symposium on High-Performance Parallel and Distributed Computing. 13–24.

[36] Yu Su, Yi Wang, and Gagan Agrawal. 2015. In-Situ Bitmaps Generation and

Efficient Data Analysis based on Bitmaps. In International Symposium on High-

Performance Parallel and Distributed Computing. 61–72.

[37] Sebastiaan J. van Schaik and Oege deMoor. 2011. AMemory Efficient Reachability

Data Structure Through Bit Vector Compression. In International Conference on

Management of Data. 913–924.

[38] Harry K. T. Wong, Hsiu fen Liu, Frank Olken, Doron Rotem, and Linda Wong.

1985. Bit Transposed Files. In Proceedings of VLDB. 448–457.

[39] Kesheng Wu, Ekow Otoo, and Arie Shoshani. 2004. On the Performance of

Bitmap Indices for High Cardinality Attributes. In VLDB. 24–35.

[40] KeshengWu, Ekow J Otoo, and Arie Shoshani. 2002. Compressing bitmap indexes

for faster search operations. In International Conference on Scientific and Statistical

Database Management. IEEE, 99–108.

[41] K. Wu, E. J. Otoo, A. Shoshani, and H. Nordberg. 2001. Notes on design and

implementation of compressed bit vectors. Technical Report LBNL/PUB-3161.

Lawrence Berkeley National Laboratory.

http://www.tpc.org/tpch
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Abstract
	1 Introduction
	2 Background
	3 Cache-Enabled Bitmap Processor
	3.1 System Overview
	3.2 Problem Statement
	3.3 Proof of NP-Completeness
	3.4 Problem Restriction and Solution
	3.5 Optimality of MaximizeCoverage

	4 System Evaluation
	4.1 TPC-H Data Characteristics
	4.2 Description of Workloads
	4.3 CLOCK Replacement Policy
	4.4 Experimental Results
	4.5 Case Study: kddcup99 Data Set
	4.6 Summary of Results

	5 Related Work
	6 Future Work and Conclusion
	References

