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Abstract—Large databases and data warehouses are
becoming prevalent for the storage and management of
energy data. Accelerating the rates at which data can be
retrieved is beneficial not only to allow for more efficient
search of the data, but also to be integrated with other
energy system tools. In this paper, a fast indexing and
data retrieval method, known commonly as a bitmap index,
is created to facilitate intelligent querying and indexing
of data generated by phasor measurement units (PMU)
at a rate of 60 Hz. We find that bitmaps are amenable
to managing efficient access to large amounts of PMU
data. Furthermore, the bitmap-management process will
provide decreased access time for data retrieval as well
as decreased memory usage. From our experiments, our
system is able to achieve approximately 30 times speedup
on queries resulting in tuples that are in the database.
Conversely, reducing the time taken to answer queries that
result in tuples not contained in the database to nearly
instantaneous.
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I. INTRODUCTION

To support real-time situational awareness, power
utilities are deploying phasor measurement units
(PMU)1 over the grid. At a high-level, PMUs are
sensing devices that measure electrical waveforms at
short fixed intervals [1]. A unique feature of PMUs
is that they are equipped with global positioning sys-
tems (GPS), allowing multiple PMUs in space to be
synchronized across time. Their mass deployment can
offer utility operators a holistic and live sense of the
grid’s health and status.

Today’s PMUs have become extremely sophisti-
cated, generating up to 60 measurements per second.
Each PMU’s data stream is collected and coalesced by

1Also known as synchrophasors, we refer to them as PMUs
throughout this paper.

a device known as a phasor data concentrator (PDC)
before finally being written to large, but slow, non-
volatile storage, e.g., hard disks. When data streams
from many PMUs are combined, it can amount to
massive volumes of data each year. However, common
data processing tasks, such as ad hoc querying, retrieval
for analysis, and visualization may require scanning or
randomly accessing large amounts of PMU data over on
disk, which would take a prohibitive amount of time.
We must therefore leverage fast storage and retrieval
mechanisms to accelerate data access times.

One data structure, known as a bitmap index [2], has
become popular for managing large amounts of data in
the context of scientific applications [3]–[5], network
traffic monitoring [6], and data warehousing [7], [8]. A
bitmap B is an m × n matrix where the n columns
represent range-bins, and the rows correspond to the m
records (e.g., PMU measurements). A bit bi,j = 1, if
the ith record falls into the specified value/range of the
jth bin, and bi,j = 0, otherwise.

Records Bins
X Y

x1 x2 ... x50 y1 y2 y3

t1 0 1 ... 0 0 0 1
t2 0 0 ... 0 0 1 0
t3 0 0 ... 1 0 0 1
... ... ... ... ... ... ... ...

TABLE I. AN EXAMPLE BITMAP INDEX

Consider the bitmap in the Table I. Suppose this
example data has two attributes, X and Y , and the
values of X are known to be integers in the range
(0, 50] and that the values of Y can be any real number.
Due to its small cardinality, we can generate a bin xj
for each possible value of X . Because the values of
Y are continuous and unbounded, we must discretize
its values, i.e., decide on an appropriate cardinality of
bins to represent Y , and select the range of values
associated with each bin. In our example, we chose to



use only three bins, y1 = (−∞,−5], y2 = (−5, 5), and
y3 = [5,∞).

Suppose we want to retrieve all records from disk
where X < 25 and Y = 0. We can identify the
candidate records by computing the following boolean
expression,

vR = (x1 ∨ ... ∨ x24) ∧ y2
The bits with a value of 1 in vR corresponds the set of
candidate records on disk,

R = {t | (t[X] < 25) ∧ (−5 < t[Y ] < 5)}

Intuitively, there could be false positives in R, which
requires checking, but only the records ri ∈ R with
a corresponding bit vR[i] = 1 must be retrieved from
disk and examined to ensure they meet the selection
criteria. All records ri with a corresponding bit vR[i] =
0 are pruned immediately and do not require retrieval
from disk. Because a well-designed bitmap is sparse and
compressible, it can be stored in core-memory, which
is orders of magnitude faster than disk.

As we can see, bitmaps can help reduce disk
accesses when properly discretized, resulting in a
space/accuracy tradeoff. More precise pruning may have
been possible had we split the attribute Y into even
more, finer-grained, bins. However, each additional bin
effectively adds an entire dimension, increasing the
bitmap index’s size, challenging its ability to fit in core-
memory. Furthermore, appropriate range assignment of
the bins will also affect accuracy.

In this paper, we describe the design and implemen-
tation of a bitmap-supported PMU data management
system. Specifically, we make the following contribu-
tions: (1) We obtained one year of real data collected by
the Bonneville Power Administration’s network of PMU
sites. We characterized the prominent features of this
data set to inform discretization decisions for bitmap
indexing. (2) Based on the PMU data characterization,
we generated a bitmap index over our data set with high
selectivity. We integrated this index into our existing
bitmap compression and processing framework [9].

The remainder of this paper is organized as follows.
Section II describes the Word-Aligned Hybrid code, a
popular technique for bitmap compression. An overview
of our data management and retrieval system is de-
scribed in Section III. In Section IV, we present our
PMU data characterization results. Preliminary evalu-
ation results are presented in Section V. We discuss
future work in Section VI and conclude in Section VII.

II. BACKGROUND: WORD-ALIGNED HYBRID CODE

Several specialized bitmap compression schemes
have been introduced that allow for fast query execution
directly over the compressed bitmap codes. The Word
Aligned Hybrid code (WAH) [10] is one such efficient
bitmap compression and querying scheme. In WAH

sequences of bits in the bitmap are grouped into words,
which are defined by the hardware (e.g., w = 32
bits). Each size w word contains either a fill or literal
encoding of w− 1 bits. A fill-word is used to represent
a run of either 1’s or 0’s. The structure of a fill-word is
(flag-bit, fill-bit, length). The flag-bit indicates whether
the word is a fill or a literal (1 or 0, respectively). The
fill-bit represents the value of the run. The remaining
bits represent the number of size w− 1 runs of the fill-
bit there are. In contrast, a literal-word is encoded with
(flag, exact encoding). The flag-bit (= 0) signifies that
the word is a literal. This is then followed by the exact
encoding, which is the literal translation of the (w− 1)
bits. In this paper, we assume that word size w = 32.

1011110111111111111111100000001  11111111111111...1

15x31

Uncompressed Bit Vector (1155 bits)

WAH Compressed Bit Vector (32 bits)

01011110111111111111111100000001 11000000000000000000000000101111

31

Fig. 1. WAH Compression Example

Fig. 1 illustrates an example of compressing a bit
vector using a 32-bit word. The example shown in Fig. 1
shows the compression of a bit vector that is 1155 bits
long. Compressing with WAH using 32-bit words gives
a compression ratio of approximately 18 times resulting
in a bit vector containing only 64 bits.

Logical operations between bit vectors occur by per-
forming a bitwise operator between them. Performing
these operations on compressed bit vectors happens at
the level of a single word. One important aspect during
bitwise operations is the alignment of the words, i.e.,
that each bit is operated on against its respective bit
in another bit vector. This is already done through the
design of WAH, since each word represents an equal
sets of bits, w − 1 = 31 in our case, for words of size
32 bits. These words can either contain a single set of
31 bits or many, depending on whether they are literals
or fills respectively.

When performing operations between each bit vec-
tor, a variable active word is created for each bit vector.
The active word keeps track of the word that is being
operated on in that bit vector, starting with the first.
When the bitwise operation is applied to all the encoded
bits in the active word, it then moves onto the next
word in that bit vector. Three scenarios can occur
when performing bitwise operations between two active
words:

Fill Word vs. Fill Word: In this scenario, if
both active word variables are encoding the
same number bits, then the bitwise operation
can be performed without extracting any addi-
tional sets of bits. That is, for a word of size
32, only that many bits need to be operated



on, allowing for queries to take place without
decompression. In the case where the active
words do not encode the same number of bits,
consider the following. Given two words, X
and Y where X encodes more bits than Y , the
equal number of bits are operated on, reducing
the length of X to the difference and exhausting
the bits encoded in Y . The active word that
represented Y reads the next word while X
remains with a reduced run length.

Literal Word vs. Fill Word: With a literal and
a fill, a single set is again subtracted from the
fill and compared with the literal set of bits
encoded in the literal word. Then the active
word moves to the next word in the respective
bit vector. If there are no more bits encoded in
the fill, then the active word moves to the next
word in its respective bit vector.

Literal Word vs. Literal Word: The bitwise
operations between two literals is performed
normally on the encoded bits.

There is a direct correlation between how compressed
a bit vector is with how fast queries can be performed.
The more compressed a bit vector is, the faster the query
will occur. This is because of how operations occur
between fill words amortizes the cost of applying the
logical operation between two bit vectors.

III. SYSTEM DESIGN

Given a user query that selects a subset of records
from the PMU data archive, the naı̈ve approach to
respond to the query would be to perform a linear scan
of the database, comparing each record for selection,
and then returning the matching records. For a real-
time application such as the power operators’ situa-
tional awareness, this operation would be too expensive
because disk I/O operations are slow. Our PMU data
management system, depicted in Fig. 2, has multiple
software components allowing the user to build a bitmap
index over raw data, and to efficiently query records that
match specifications.

The Bitmap Creator inputs the raw PMU data and
generates a bitmap using the binning strategy speci-
fied in Section IV. When new files are added to the
database, these records will simply be appended onto the
index. Once the bitmap is created, the Compressor will
compress the index using WAH. After compression, the
system is ready to receive queries from the user. These
queries will give selection conditions on which values of
particular attributes the user is interested in. The Query
Engine then translates the query into boolean operations
over the specified bins in the compressed index. This
will produce a Result Bit Vector vR, which contains
information on which records we need to retrieve from
disk.

Files on disk

Bitmap Creator

1 0 1 1
1 1 0 0
0 0 0 1

.

.

Index

Compressor

0 1 1 0
0 1 1 1
0 0 1 1

.

.

Compressed
Index

Query Engine

1011001

Result Bit Vector

File Map

Results

User Input

Fig. 2. PMU Data Management System Architecture

While vR holds the selected record information (all
bits with a value of 1), it is the actual data on disk
that must be returned. An intermediate data structure,
the File Map, was created to facilitate this role. The
File Map is an intermediate data structure that holds
metadata on the files and how many tuples 2 they each
contain. There are two values per File Map entry: total-
RowCount and filePointer. The totalRowCount contains
the total number of tuples up to and including that
particular file. The filePointer holds a pointer to the
corresponding file on disk that contains the next set of
tuples. To retrieve files with this method, the result bit
vector is first scanned and a count is kept for the number
of bits that have been read. For each hit, the count is
hashed to its corresponding index in the File Map. This
is an upper-bound hash, meaning that the count value
is hashed to the closest totalRowCount value, without
being greater than it. This will give the corresponding
file that is desired.

Fig. 3 illustrates a small example of a bit vector and
where the bits hash to the filemap. Bits one through
three are hashed to the first row in the File Map
structure. Bits 4 and 5 are hashed to the second row
since these bits represent tuples 4 and 5, which are
stored in fileB. With the upper bound hash, bits 4 and
5 hash to totalRowCount 6, since they are both greater
than 3 but less than or equal to 6. Bits 60, 62, and 63
are not hashed since they are not hits. Only bits in the
bit vector that have value one will be hashed. This leads
to improved performance when there are long stretches
of zeroes in the bit vector.

2An entry (or record) in the database



1!
1!
1!
1!
1!
.!
.!
.!
0!
1!
0!
0!
.!
.!
.

1!
2!
3!
4!
5!
.!
.!
.!

60!
61!
62!
63!
.!
.!
.

Bit VectorID File Map
totalRowCount filePointer

3 fileA
6 fileB
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Fig. 3. File Map Structure

IV. CHARACTERIZING PMU DATA FOR BITMAP
INDEXING

We obtained 950 GB of data from a number of
PMUs within Bonneville Power Administration’s (BPA)
operating region from August 2012 to August 2013.
At each PMU, a phasor measurement is sampled every
1/60 sec. Each measurement is represented by a date-
time and a phasor, which is a pair of values: the
phase angle φ and the positive voltage magnitude V .
The phasors from 20 PMUs are combined, resulting in
2 × 20 PMUs = 40 attributes. The phase angle φ is
a time-varying real number that oscillates within the
range of [−180, 180]. The voltage, on the other hand,
is a non-negative real number. In order to define the
bitmap ranges, we examined φ and V ’s distributions.
We analyzed the distribution of φ and V over a sample
size of 30 days (155, 520, 000 measurements).

To optimize for speed, the design of the bitmap
must be informed by the queries that will be frequently
executed. For frequently queried values in bitmap struc-
tures, a crippling factor in response time is the can-
didacy checks to identify true positives, which require
disk access. Due to imperfect discretization, bins will
often contain bits that indicate more than one value.
It is therefore necessary to check whether that bit is an
indication of the correct value. For example, if a bin has
the range of five possible values then that means each
bit in that bin is one of five different values. Performing
this check, called a candidacy check, ensures that the
tuple contains the desired value for the query. Choosing
the correct binning strategy can therefore potentially
improve our query times by reducing candidacy checks
among values that were expected to be queried.

From discussions with power systems experts at
BPA, queries typically comprise a specific range of
dates, voltage V , phase angle φ, or any combination

of these attributes. When generating the bitmap, the
binning (discretization) strategy can minimize candidate
record checks and provide fast query response times.
Due to the low cardinality of the date-time attribute, it
was simple to generate bins: 60 bins each for second
and minute, 24 bins for hour, 31 bins for day, etc.
with the exception of the year. In this case we used 11
bins for the year, starting at 2010. Since there were no
range bins, no candidacy checks were necessary when
performing queries on the dates. Because φ and V are
real values, we discretize based on their distribution.
In order to find the distributions of both φ and V , the
cumulative distribution function (CDF) plots were con-
structed. These distributions determined what binning
strategies were used.

Fig. 4 illustrates the phase angle φ distribution.
From this graph we can see that φ follows a uniform
distribution. Because φ is also bounded, we apply an
equal-width binning strategy over φ, meaning the range
of each bin is equivalent. We designed the bitmap
creator in such a way that this range can be assigned
by the user before creation of the bitmap. For our
experiments we set this value to 10, leaving 36 bins for
each PMU attribute. Fig. 5 represents the phase angle
values that were assigned to each bin.

Fig. 4. Normal Phase Angle CDF

-180 -170 -160 -150 -140 -130 -120 -110 -100 -90 110… 120 130 140 150 160 170 180

Fig. 5. Phase Angle Bins

Fig. 6 illustrates the distribution for normal oper-
ation of a PMU’s voltage magnitude. The majority of
the values occur between [535, 545]. For this attribute,
we used a binning strategy which attempts to minimize
candidacy checks for the values that are most likely to
be queried. We assume the majority of queries from the



user will pertain to some anomaly, that is values that are
not apart of normal operations. Therefore, a bin with
range [535, 545] can be created to contain the regularly
occurring values. Since the range of the bin is quite
large, and it spans the values which occur most fre-
quently, then the majority of tuples which fall into this
category will require candidacy checks. However, our
assumption is that queries will occur for values outside
the normal range. This leads to a specific strategy for
binning: There are ten bins on either side of the central
bin representing the normal operational range. Each of
these outer bins is capable of containing a value with a
range of one. Fig. 7 represents the binning distribution
for voltage magnitude. There is an additional bin for the
value zero, since this is an indication of a data event at
a PMU site. This strategy generates bins of small ranges
for values of V that will be queried frequently and very
large bins for those that aren’t.

Fig. 6. Normal Voltage Magnitude CDF-180 -170 -160 -150 -140 -130 -120 -110 -100 -90 110… 120 130 140 150 160 170 180

0 1 … 547 548 549 553 554555546 … 552526 527 528525 533 534 535532

Fig. 7. Voltage Magnitude Binning

In addition to the aforementioned attributes, we
also introduced an attribute ∆, which represents the
displacement between phase angles from the previous
time-stamp, i.e., ∆t = |φt − φt−1|. ∆ is a coarse
representation of rate of change and can be an indicator
as to whether a power event occurred. Therefore, we
bin ∆ with smaller ranges, reducing the number of
candidacy checks. Listed below are the bins that we
used for each attribute. The total is 9,768 bins for each
row in the bitmap index.

• Year: 11

• Month: 12

• Day: 31

• Hour: 24

• Minute: 60

• Second: 60

• Millisecond: 10

• φ (23 for each PMU): 40× 36

• V (36 for each PMU): 40× 23

• ∆ (180 for each PMU): 40× 180

V. RESULTS

Queries were ran over the database to demonstrate
the performance gains from analyzing and creating a
bitmap index over the data. For these experiments,
4 million rows from the database were queried. File
Map was used to retrieve the tuples from the database
once a query has been serviced. The bitmap results
are compared against the common linear scan that is
performed when searching a database.

Table II shows results from six queries that were
run. Query ID 1 is an example of a query where the
user wishes to find when a specific PMU had a voltage
magnitude of 533. An example of when this might
happen is if the Correlation Visualization indicates there
is an event occurring when that PMU has a voltage
magnitude of 533. The exact same query to the bitmap
engine provide a 68× speed up on retrieval. Query
IDs 2-4 demonstrate examples of requests for tuples
at specific dates. These demonstrate that performing
multiple queries with small adjustments does not require
much additional time. Query IDs 5 and 6 shows queries
for tuples that do not exist in this data set. Since the
bitmap engine able to look at the bit vector results
without every going to disk to see if the desired tuples
are in the database, the speedup is many orders of
magnitude greater. The bitmap query ID 5 takes slightly
more time than ID 6 because ID 5 has to perform
bitwise ANDs between each column, while ID 6 is
simply checking a single column. There is very little
time difference between the linear scan in ID 5 and 6.

The linear scan times are so similar because no
matter the query given, it is necessary to scan the entire
data set to ensure accuracy. Bitmap index query times
can vary and primarily depend on how many columns
need to be compared and how many tuples need to be
pulled from disk. In fact the majority of the time spent
for the bitmap index queries is simply retrieving the
tuples from disk, making I/O the limiting factor.

VI. FUTURE WORK

The methods presented in this paper produced re-
sults that prove promising when retrieving this data.
Presented below is the direction we plan to take the



ID Selection Criteria Linear Scan
(sec)

Bitmap (sec) Tuples
Retrieved

1 Find all tuples where PMU1 has a magnitude
Voltage Magnitude of 533.

25.859666 0.379387 160

2 Find all tuples that happened on exactly June
24, 2013 at 21:05 hours.

25.350993 0.854952 7204

3 Find all tuples that happened on exactly June
24, 2013 at 21:06 hours.

28.001001 0.922941 7204

4 Find all tuples that happened on exactly June
24, 2013 at 21:07 hours.

26.133607 0.785588 7204

5 Find all tuples that happened on exactly June
24, 2013 at 21:06 hours with PMU having a
Voltage Magnitude of 533.

28.019449 0.001772 0

6 Find all tuples in 2012. 26.720291 0.0000601 0

TABLE II. QUERY PERFORMANCE

methods we currently have, making them scalable and
more efficient.

Given large data sets, it is necessary to add addi-
tional methods of indexing for faster navigation and for
queries to be returned in reasonable amounts of time.
One such method that could be applied is sampling.
This adds tiers of bitmaps, i.e., bitmap indices for
progressively more precise bitmaps, each one at a lower
resolution of the data. For small amounts of data this is
simply wasted space and too much overhead. When bit
data such as this is introduced the sampling overhead
begins to diminish as access times to the data doesn’t
scale up with the amount of data as quickly.

VII. CONCLUSION

In conclusion, we have shown that our bitmapping
database minimizes data driven bottlenecks that are typ-
ically associated with data sets of this size. Specifically,
compression of the data minimizes the space overhead
required for indexing, allowing it to be operated on
within memory. Query response times are also mini-
mized due to the utilization of indexing coupled with the
FileMap structure. This results in the ability to perform
frequent queries leading to better analysis of the data.

This system is ideal to be coupled with other PMU
analysis tools in order to better understand the data.
One such tool that this system has already been coupled
with is a correlation algorithm that is used to detect
events occurring within the power system [11]. The
combination of these two systems allow for fast retrieval
of data in order identify anomalies among other events.
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