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ABSTRACT
Big-data management systems must handle multiple concurrent

queries over multi-dimensional data sets. To achieve high through-

put, such systems could implement various techniques to avoid

redundant computations and data fetches. One such approach is

to cache a subset of the query results and reuse these results to

(partially) fulfill future query requests. This approach can be quite

effective for query-at-a-time processing. However, we suspect that

even greater performance is being left on the table if queries are

only optimized in isolation, and that higher throughput can be

extracted through a systematic examination of the relationships

between queries in a given workload.

This paper describes a framework that captures inter-query re-

lationships to reveal increased opportunities to exploit caching.

We present a heuristic used for scheduling queries and a novel

workload-informed cache replacement policy. When these methods

are applied in combination, our system is able to extract impressive

speedup of the total execution time of batches of queries, using only

modest cache sizes. In this paper we show that the proposed re-

placement algorithm easily outstrips the performance of the classic

algorithms FIFO and LRU. Under certain conditions, our systemwas

able to achieve roughly 2 to 4 time speedup over these traditional

replacement schemes.
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1 INTRODUCTION
Achieving high throughput over data-intensive processing work-

loads is among the key challenges in the management of big data.

One method of enabling efficient filtering and processing of large

data sets is to summarize the underlying data using bitmap in-

dices and their suite of related algorithms [39]. Bitmaps are a 2-

dimensional array of bit values built over the underlying data to

enable a wide range of selection and filtering operators to be applied

efficiently. To do this, common data transformation expressions

(e.g., select, project, join, etc.) can be equivalently converted into
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fast bitwise expressions such that, when carried out over bitmaps,

can greatly reduce data processing time. The processing perfor-

mance achievable through bitmap indices explains why they can

be found in many of today’s big data applications, databases, and

warehouses [19, 27, 35–37].

While bitmaps can achieve sublinear-time processing for many

types of queries, their performance is known to greatly degrade as

data dimensionality increases. Thus, accelerating bitmap process-

ing has garnered a great deal of attention, spurring the creation of

new bitmap-processing algorithms [8, 10, 17, 40], support of dis-

tributed/parallel systems [4, 29], among many other approaches. To

this end, we previously designed and implemented a bitmap caching

framework that specializes in accelerating query processing over

high-dimensional bitmap indices. Our caching system stores meta-

data alongside cached query results, e.g., expressions describing
each corresponding cached item. By exploiting the available meta-

data, we demonstrated that a provably optimal set of cached results

could be identified in log-linear time and reused to help satisfy

future queries.

Our existing bitmap caching framework, however, had assumed

an interactive workload environment, in which queries are pro-

cessed as soon as they arrive to minimize response times. Big data

analytical workloads, on the other hand, are generally less con-

cerned with the response times of individual queries in favor of

optimizing for throughput [34]. When queries are processed in

isolation, the dependencies between them become obscured. We

posit that inter-query dependencies within query sets could be

exploited to improve overall cache performance and achieve higher

throughput of batched query workloads.

This paper reports on the study of various techniques applied

to the cache management of bitmap indices to improve the overall

execution time of batched queries. We examine a two-pronged

approach: First, we propose a scheduling heuristic to reorder queries

inside each batch prior to their dispatch for execution. We also

propose a novel cache-replacement algorithm, Least Aggregated
Coverage, that is informed by the cost and dependency analysis of

the batched query set.

This paper makes the following contributions:

• We consider the problem of maximizing query throughput of

workload batches. Our framework performs a static analysis

of a set of enqueued query requests to determine semantic

interrelationships that informmultiple decision points on up-

keeping a bitmap cache that produces high hit rates within

the batch.

• We propose a simple yet provably optimal query schedul-

ing algorithm. The query-dispatch sequence determines the

recent state of the cache, which greatly impacts the perfor-

mance of future queries.
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• We propose a novel cache-replacement algorithm, Least Ag-
gregated Coverage, which evicts the cached result(s) with the

least perceived value for accelerating future queries.

• We test our system using the TPC-H benchmark. Our re-

sults show that our scheduling algorithm produces a 1.75×
speedup over dispatching queries using their natural times

of arrival. Furthermore, when using our cache-replacement

policy in tandem with our scheduler, we were able to extract

2.85× to 3.41× speedup over the use of classic replacement

policies FIFO and LRU, respectively.

• On a modest 1 GB cache, our algorithms can achieve perfor-

mance that is only slightly slower (36%) than the use of an

infinite sized cache.

The remainder of this paper is organized as follows. Section 2

covers the basics of bitmap indexing and processing. Section 3 de-

tails the proposed models and algorithms to optimize usage of our

cache. A detailed experimental design and the discussion and analy-

sis of findings are given in Section 4. Related works are summarized

in Section 5, and we conclude our results in Section 6.

2 BACKGROUND
This section provides a brief overview of bitmap index creation and

query processing.

A bitmap index is created by first selecting a subset of a database

relation’s attributes. The domains of these attributes are then parti-

tioned to form a set of bins. A bin can represent a discrete value,

such as a single name, or a range of values, such as ages between 30

and 50. Each indexed attribute for each tuple in the relation is then

discretized into the appropriate bin. This process places 1 in the bin

that specifies the tuple’s attribute value. As long as the bins’ ranges

do not overlap in some way, all other bins for that tuple receive a

value of 0. This process creates𝑌 bit vectors, where𝑌 is the number

of bins. Each bit vector has𝑋 rows, where𝑋 is the number of tuples

in the underlying relation. The set of all bit vectors forms an 𝑋 ×𝑌
binary matrix or bitmap. Each row in the bitmap is associated with

a pointer to the underlying tuple’s location on disk.

The binary format of a bitmap index allows for fast hardware-

enabled logical operations to aid in query processing. In its simplest

form, bitmap query processing is 𝑣𝑖 ◦ 𝑣 𝑗 = 𝑟 where 𝑣𝑖 and 𝑣 𝑗 are bit

vectors, ◦ denotes a bitwise logical operation, and 𝑟 is the result.
For example, consider an employee relation where an age attribute

is discretized into four bins: 𝑏𝑖𝑛1 = [18, 30), 𝑏𝑖𝑛2 = [30, 40), 𝑏𝑖𝑛3 =
[40, 50), and 𝑏𝑖𝑛4 = [50,∞). The number of rows needed to be

fetched from disk for the query:

SELECT * FROM employee as e WHERE e.age > 40
AND e.age < 60

is reduced by performing the bitwise operation 𝑏3 ∨ 𝑏4 = 𝑟𝑒𝑠𝑢𝑙𝑡

where 𝑏3 and 𝑏4 are the bit vectors associated with 𝑏𝑖𝑛3 and 𝑏𝑖𝑛4,

respectively. Every row in 𝑟𝑒𝑠𝑢𝑙𝑡 that contains a 1 corresponds to

a tuple that needs to be retrieved from disk for further candidate

checking. All other rows on disk can be ignored.

Various forms of bitmap indices have been used to aid in process-

ing many types of queries, including point queries [23, 30], range

queries [29, 38, 41], joins [25], skyline queries [12], among others.

Our work focuses on range queries, though we believe it is easily

extendable to other query types. Bitmap range query processing

takes the form 𝑧 = 𝑥1 ∨ 𝑥2 ∨ . . . ∨ 𝑥𝑛 , where 𝑥𝑖 is a bit vector

representing attributes value within the desired range, and 𝑧 is

the result vector indicating the tuples to be retrieved from disk.

A simple iterative algorithm can be used to solve range queries.

First, 𝑧 is initialized to 𝑧 ← 𝑥1, and then the operation 𝑧 ← 𝑧 ∨ 𝑥 𝑗
is repeated for all 𝑗 | 2 ≤ 𝑗 ≤ 𝑛. In spite of the improvements to

query-processing time that bitmaps can provide, it is a well-known

problem that performance degrades for high-dimensionality data,

in which 𝑛 is assumed to be large.

The next section introduces our framework, which uses cached

partial query results to significantly reduce the overhead of range

queries applied to high-dimensional data sets.

3 SYSTEM DETAILS
In this section, we present the overall system design and details on

themodels and algorithmswe have developed. Figure 1 presents a di-

agram depicting our complete system. This architecture is an expan-

sion of our previously introduced bitmap caching framework [28].

Our old framework accepts single dynamically issued queries in the

form of ordered pairs of bitmap bit vector IDs (𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑), where
𝑠𝑡𝑎𝑟𝑡 ≤ 𝑒𝑛𝑑 . These pairs encode sequential range queries of the

form 𝑏𝑠𝑡𝑎𝑟𝑡 ∨ 𝑏𝑠𝑡𝑎𝑟𝑡+1 · · · ∨ 𝑏𝑒𝑛𝑑 . Upon receiving a request, the

system exploits the associative nature of range queries by probing

its cache for results of queries that were entirely within the range

of [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑]. From its current cache configuration, it builds an

optimal set of partial results that maximally covers the new query

request. It then fetches all the bit vectors not covered by cached

results and coalesces the two sets. The new resulting vector is then

added to the cache.

To illustrate the function of this framework, consider the system

in its initial state. The first request it receives, 𝑞1, is (15, 32). Since
the cache is empty, it will have to retrieve, from disk, all the needed

bit vectors 𝑏15, 𝑏16, . . . 𝑏32 and perform the sequential range query

algorithm described in Section 2. It will cache the result as 𝑟𝑞1.

Assume the second request, 𝑞2 is (12, 33). Since the range of 𝑞1 is
fully contained in 𝑞2, the system can use the cached result. It will

fetch bit vectors 12 − 14 and 33 as they are not included in 𝑟𝑞1. It

will then perform 𝑏12 ∨ 𝑏13 ∨ 𝑏14 ∨ 𝒓𝒒1 ∨ 𝑏33. By reusing 𝑟𝑞1 the

framework saves on both IO operations and query processing.

Notice that if the query order was switched in the above example,

our old framework would not have been able to realize any benefit

from the cache. This is because 𝑞2 is not a subrange of 𝑞1. Thus, the

result of 𝑞2 could not be used to aid in the processing of 𝑞1. This

paper presents enhancements to our caching framework to better

leverage inter-query dependencies.

Depicted as Queries in Figure 1, queries submitted to the new

system are initially queued instead of being immediately dispatched

for execution. When the batch size reaches a specified limit, a Query
Dependency Graph is generated over the set of queued queries.

Concurrently, the batch is sent to the Query Scheduler, which
reorders the queries in an effort to maximize cache hits.

When queries are dispatched for processing, the cache performs

as before by probing for cached results for coverage and retriev-

ing uncovered bit vectors from the disk. The new system uses a

novel replacement algorithm to decide which of the existing en-

tries to remove from the cache when its memory limit is reached.
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Figure 1: Overview of the Bitmap Caching Framework

Particularly, our proposed LAC replacement algorithm (described

in detail below) consults the Query Dependency Graph to make

this decision.

3.1 Shortest-First Batch Ordering
When the batch size reaches a designated threshold, our system re-

orders the queries for faster execution.We employ the Shortest-First

query scheduling policy, which simply selects the next outstanding

query with the smallest size. The rationale behind Shortest-First

is straightforward: in order for a cached result to be used, it must

have a smaller range than that of a subsequent query. Therefore, it

follows that the queries covering smaller ranges should be executed

(and cached) first.

We now show that Shortest-First produces an optimal schedule

with respect to maximizing cache reuse over time. For ease of

writing, we adopt the use of the following operators for expressing

relationships between queries as follows:

• Query Equality: 𝑞𝑖 = 𝑞 𝑗 . Queries 𝑞𝑖 , 𝑞 𝑗 are equal if and

only if 𝑞𝑖 .𝑠𝑡𝑎𝑟𝑡 = 𝑞 𝑗 .𝑠𝑡𝑎𝑟𝑡 ∧ 𝑞𝑖 .𝑒𝑛𝑑 = 𝑞 𝑗 .𝑒𝑛𝑑 .

• Query Size: |𝑞 |. Returns (𝑞.𝑒𝑛𝑑 − 𝑞.𝑠𝑡𝑎𝑟𝑡) + 1, which is the

number of bit vectors needed to process 𝑞.

• Coverage: 𝑞𝑖 � 𝑞 𝑗 . Predicate that is true if 𝑞𝑖 covers 𝑞 𝑗 and
false otherwise. A query 𝑞𝑖 is said to (partially) cover 𝑞 𝑗 if
𝑞𝑖 .𝑠𝑡𝑎𝑟𝑡 ≥ 𝑞 𝑗 .𝑠𝑡𝑎𝑟𝑡 and 𝑞𝑖 .𝑒𝑛𝑑 ≤ 𝑞 𝑗 .𝑒𝑛𝑑 . Essentially, 𝑞𝑖 is a

subrange of 𝑞 𝑗 .

• Covered Set: 𝑞𝑖 ⊚ 𝑞 𝑗 . If 𝑞𝑖 � 𝑞 𝑗 , this operation returns a

set of 𝑞𝑖 ’s bit vector IDs {𝑞𝑖 .𝑠𝑡𝑎𝑟𝑡, 𝑞𝑖 .𝑠𝑡𝑎𝑟𝑡 + 1, . . . , 𝑞𝑖 .𝑒𝑛𝑑},
otherwise it returns ∅.

We now define a few terms that will be used throughout the

proof. Recall from earlier that the execution of a query produces

a result vector. The cache can be modeled as a stored set of result

vectors 𝑅 = {𝑟1, 𝑟2, ...} that correspond to queries 𝑞1, 𝑞2, .... We also

denote 𝑅𝑖 to be the cache’s state after the execution of all queries

𝑞1, 𝑞2, ..., 𝑞𝑖−1, 𝑞𝑖 . Specifically,

𝑅𝑖 =

{⋃𝑖
𝑘=1
{𝑟𝑘 }, 𝑖 > 0

∅, Otherwise

(1)

We further define the cache coverage 𝑐 (𝑞, 𝑅) to represent the number

of bit vectors that can be covered in 𝑞 with respect to cache state 𝑅.

𝑐 (𝑞, 𝑅) =
����� ⋃
𝑟 ∈𝑅

𝑞 ⊚ 𝑞(𝑟 )
����� (2)

where 𝑞(𝑟 ) refers to the query represented by result vector 𝑟 , so

this term is the total number of bit vectors that the current state of

the cache 𝑅 covers for 𝑞.

Lemma 3.1.

Given two queries 𝑞𝑖 and 𝑞 𝑗 , if |𝑞𝑖 | ≤ |𝑞 𝑗 | and 𝑞𝑖 ≠ 𝑞 𝑗 then

¬(𝑞 𝑗 � 𝑞𝑖 ).

Proof. If 𝑞 𝑗 .𝑒𝑛𝑑 ≤ 𝑞𝑖 .𝑠𝑡𝑎𝑟𝑡 or if 𝑞 𝑗 .𝑠𝑡𝑎𝑟𝑡 ≥ 𝑞𝑖 .𝑒𝑛𝑑 , then queries

are entirely disjoint and ¬(𝑞 𝑗 � 𝑞𝑖 ). If the queries overlap and

|𝑞𝑖 | ≤ |𝑞 𝑗 | it is clearly impossible for both 𝑞 𝑗 .𝑠𝑡𝑎𝑟𝑡 ≥ 𝑞𝑖 .𝑠𝑡𝑎𝑟𝑡

and 𝑞 𝑗 .𝑒𝑛𝑑 ≤ 𝑞𝑖 .𝑒𝑛𝑑 , and so by definition ¬(𝑞 𝑗 � 𝑞𝑖 ). Finally, if
|𝑞𝑖 | = |𝑞 𝑗 | and since𝑞𝑖 ≠ 𝑞 𝑗 , if𝑞 𝑗 .𝑠𝑡𝑎𝑟𝑡 < 𝑞𝑖 .𝑠𝑡𝑎𝑟𝑡 then by definition

¬(𝑞 𝑗 � 𝑞𝑖 ). If 𝑞 𝑗 .𝑠𝑡𝑎𝑟𝑡 > 𝑞𝑖 .𝑠𝑡𝑎𝑟𝑡 , since the queries are the same

size, then 𝑞 𝑗 .𝑒𝑛𝑑 > 𝑞𝑖 .𝑒𝑛𝑑 and again by definition ¬(𝑞 𝑗 � 𝑞𝑖 ). □
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Theorem 3.2. The schedule determined by Shortest-First is optimal
for maximizing total cache coverage.

Proof. The Shortest-First policy produces a schedule,

𝑆 = (𝑞1, ..., 𝑞𝑖 , ..., 𝑞𝑖+𝑗 , ..., 𝑞𝑛) such that |𝑞𝑖 | ≤ |𝑞𝑖+𝑗 | ∀𝑗 ≥ 1. Let 𝑇𝑆
denote the total cache coverage from executing schedule 𝑆 . Specifi-

cally,

𝑇𝑆 =

𝑛∑︁
𝑖=1

𝑐 (𝑞𝑖 , 𝑅𝑖−1) (3)

If 𝑇𝑆 is sub-optimal, then it would follow that there exists an al-

ternate schedule 𝑆 ′ = (𝑞1, ..., 𝒒𝒊+𝒋 , 𝑞𝑖 , ..., 𝑞𝑛) in which at least one

query must have been moved forward in the execution order to

produce greater total coverage, i.e., 𝑇𝑆 < 𝑇𝑆 ′ .

Expressing the total coverage more explicitly, we obtain:

𝑇𝑆 = 𝑐 (𝑞1, 𝑅0) + 𝑐 (𝑞2, 𝑅1) + ... + 𝑐 (𝑞𝑖 , 𝑅𝑖−1) (4)

+ 𝑐 (𝑞𝑖+1, 𝑅𝑖 ) (5)

+ ... (6)

+ 𝑐 (𝑞𝑖+𝑗 , 𝑅𝑖+𝑗−1) (7)

+ 𝑐 (𝑞𝑖+𝑗+1, 𝑅𝑖+𝑗 ) + ... + 𝑐 (𝑞𝑛, 𝑅𝑛−1) (8)

Conversely, we can rewrite 𝑇𝑆 to account for the reordering of

schedule 𝑆 ′. Specifically,

TS′ = c(q1,R0) + c(q2,R1) + ... + c(qi−1,Ri−2) (9)

+c(qi+j,Ri−1) (10)

+c(qi,Ri−1 ∪ {ri+j}) (11)

+... (12)

+c(qi+j−1,Ri+j−2 ∪ {ri+j}) (13)

+c(qi+j+1,Ri+j) + ... + c(qn,Rn−1) (14)

(For readability, allTS′ termswill be emboldened for the remainder

of this section).

Note that all terms up to query 𝑞𝑖−1 (line 9) are unchanged

in sequence (and thus coverage is unchanged) and that the only

affected queries range from 𝑞𝑖 to 𝑞𝑖+𝑗 inclusive (lines 10 - 13). Line
10 is the new order position for 𝑞𝑖+𝑗 . From that position to query

𝑞𝑖+𝑗−1 (line 13), all the queries have the same coverage as in𝑇𝑆 with

the additional coverage provided by 𝑞𝑖+𝑗 . Thus each line contains

the original 𝑆 cache configuration ∪{𝑟𝑖+𝑗 }. After query 𝑞𝑖+𝑗−1, the
coverage is again the same as the cache will contain all the same

result vectors as in 𝑇𝑆 .

We now show that the difference 𝑇𝑆 − TS′ ≥ 0. Note that all

terms cancel except for

𝑇𝑆 − TS′ =

𝑐 (𝑞𝑖+𝑗 , 𝑅 𝑗−1) − c(qi+j,Ri−1) (15)

+ 𝑐 (𝑞𝑖 , 𝑅𝑞𝑖−1 ) − c(qi,Rqi−1 ∪ {ri+j}) (16)

... (17)

+ 𝑐 (𝑞𝑖+𝑗−1, 𝑅𝑞𝑖+𝑗−2 ) − c(qi+j−1,Rqi+j−2 ∪ {ri+j}) (18)

Because 𝑆 is ordered by size, we know that |𝑞𝑏 | ≤ |𝑞𝑖+𝑗 | ∀𝑏 ∈
{𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑗 − 1}. First, we examine when 𝑞𝑏 ≠ 𝑞𝑖+𝑗 . In this

case, we know by lemma 3.1 that ¬(𝑞 𝑗 � 𝑞𝑖 ), and so the result bit

vector 𝑟𝑖+𝑗 will not add any additional coverage to 𝑞𝑏 . Therefore

𝑐 (𝑞𝑏 , 𝑅𝑏−1) = 𝒄 (𝒒𝒃 , 𝑹𝒃−1 ∪ 𝒓 𝒊+𝒋) ∀𝑏, and 𝑇𝑆 −𝑇𝑆 ′ simplifies to

𝑐 (𝑞𝑖+𝑗 , 𝑅𝑖+𝑗−1) − c(qi+j,Ri−1) (19)

Notice that 𝑅𝑖−1 ⊆ 𝑅𝑖+𝑗−1 and thus 𝑐 (𝑞𝑖+𝑗 , 𝑅𝑖+𝑗−1) ≥ c(qi+j,Ri−1)
which implies 𝑇𝑆 −𝑇𝑆 ′ ≥ 0.

The more interesting case is when the promoted query 𝑞𝑖+𝑗 is
equal to a least one of the queries it was moved in front of, or more

precisely, ∃𝑑 | 𝑖 ≤ 𝑑 ≤ 𝑖 + 𝑗 − 1 ∧ 𝑞𝑑 = 𝑞𝑖+𝑗 . It is possible that 𝑞𝑖+𝑗
is equal to multiple other queries. Assume that 𝑞𝑑 represents the

first query that 𝑞𝑖+𝑗 is equal to in 𝑆 ′. This means that 𝑞𝑖+𝑗 provides
complete coverage for 𝑞𝑑 , and c(qd,Rd−1 ∪ {ri+j}) = |𝑞𝑑 |. Notice
that for queries following 𝑟𝑑 in 𝑆 ′, the coverage remains unchanged

as 𝑟𝑑 and 𝑟𝑖+𝑗 provide the exact same coverage. Similarly, since 𝑑 is

the first query 𝑞𝑖+𝑗 is equivalent to, by lemma 3.1, the coverage for

all the queries that preceded d are unchanged. Therefore 𝑇𝑆 −𝑇𝑆 ′
simplifies to:

𝑐 (𝑞𝑖+𝑗 , 𝑅 𝑗−1) − c(qi+j,Ri−1) (20)

+ c(qd,Rd−1) − c(qd,Rd−1 ∪ {ri+j}) (21)

As established above, we know that c(qd,Rd−1 ∪ {ri+j}) = |𝑞𝑑 |.
Since 𝑟𝑑 = 𝑟𝑖+𝑗 and in the 𝑆 ordering 𝑟𝑑 is executed before 𝑟𝑖+𝑗 , we
know that 𝑐 (𝑞𝑖+𝑗 , 𝑅 𝑗−1) = |𝑟𝑑 |. So the two equations cancel, and

we simplify again to

|𝑟𝑑 | − c(qi+j,Ri−1) (22)

+ 𝑐 (𝑞𝑑 , 𝑅𝑑−1) − |𝑟𝑑 | (23)

or

−c(qi+j,Ri−1) + 𝑐 (𝑞𝑑 , 𝑅𝑑−1) (24)

Since 𝑞𝑖+𝑗 = 𝑞𝑑 , we can perform the following substitution:

−c(qd,Ri−1) + 𝑐 (𝑞𝑑 , 𝑅𝑑−1) (25)

Since𝑑 ≥ 𝑖 , we know𝑅𝑖−1 ⊆ 𝑅𝑑−1. Thus, c(qd,Ri−1) ≤ 𝑐 (𝑞𝑑 , 𝑅𝑑−1)
and therefore 𝑇𝑆 − TS′ ≥ 0 =⇒ 𝑇𝑆 ≥ TS′ .

The above approach is intuitively generalizable to any number

of promotions, and thus 𝑆 is an optimal schedule for maximizing

overall coverage. □

The optimality of Shortest-First rests on the assumption the

cache is sufficiently large, i.e., enough to store the results for all

𝑛 queries. In practice, this assumption often does not hold, and

a cache-replacement algorithm (such as FIFO, CLOCK, LRU, etc.)

must be used to evict certain entries to manage the cache size. In

our experience, however, these classical replacement algorithms are

suboptimal when used in conjunction with Shortest-First schedul-

ing. To this end, we propose a new replacement policy specifically

designed to work alongside Shortest-First scheduling. The next

subsection describes the the algorithm to build the graph model

that will be used to inform our proposed replacement policy.

3.2 Query Dependency Graph
To support our novel cache replacement algorithm (which will

be described in the following subsection), we model the query

workload using a dependency graph. The dependency graph is a

directed acyclic graph 𝐺 = (𝑉 , 𝐸), where nodes 𝑉 = {𝑞1, ..., 𝑞𝑛}
is a set of queries to be executed, and a set of directed edges

𝐸 = {(𝑞𝑖 , 𝑞 𝑗 ) : 𝑞𝑖 non-redundantly covers 𝑞 𝑗 }. That is, an edge

(𝑞𝑖 , 𝑞 𝑗 ) ∈ 𝐸 if the following conditions are met:
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(1) 𝑞𝑖 � 𝑞 𝑗 , and

(2) (𝑞𝑘 , 𝑞 𝑗 ) ∉ 𝐸 such that 𝑞𝑖 � 𝑞𝑘 .

Property (1) simply ensures that 𝑞𝑖 covers 𝑞 𝑗 , while property (2)

is to ensure that 𝑞𝑖 is non-redundant, i.e., 𝑞𝑖 provides unique and
maximal coverage of 𝑞 𝑗 .

Algorithm 1 buildGraph

1: Input
2: 𝑄 Batch of queries

3: Output
4: (𝑉 , 𝐸) Query dependency graph

5: ▷ Pre-sort the queries

6: 𝑄 ← 𝑄.𝑝𝑟𝑒𝑆𝑜𝑟𝑡 ()
7: ▷ Instantiate an empty graph

8: 𝑉 ← {}
9: 𝐸 ← {}
10: for 𝑖 ← 0 to 𝑄.𝑠𝑖𝑧𝑒 () do
11: 𝑞𝑖 ← 𝑄.𝑔𝑒𝑡 (𝑖)
12: if 𝑞𝑖 ∉ 𝑉 then
13: 𝑚𝑎𝑥𝐸𝑛𝑑 ← 0

14: for 𝑗 ← 𝑖 + 1 to 𝑄.𝑠𝑖𝑧𝑒 () do
15: 𝑞 𝑗 ← 𝑄.𝑔𝑒𝑡 ( 𝑗)
16: ▷ Terminate once ranges no longer overlap

17: if 𝑞 𝑗 .𝑠𝑡𝑎𝑟𝑡 > 𝑞𝑖 .𝑒𝑛𝑑 then
18: break
19: ▷ Skip invalid queries

20: if 𝑞 𝑗 .𝑒𝑛𝑑 > 𝑞𝑖 .𝑒𝑛𝑑 | | 𝑞 𝑗 .𝑒𝑛𝑑 ≤ 𝑚𝑎𝑥𝐸𝑛𝑑 then
21: continue
22: ▷ Add an edge to the graph

23: 𝐸 ← 𝐸 ∪ {(𝑞 𝑗 , 𝑞𝑖 )}
24: 𝑚𝑎𝑥𝐸𝑛𝑑 ← 𝑞 𝑗 .𝑒𝑛𝑑

25: 𝑗 ← 𝑗 + 1
26: ▷ Add node 𝑞𝑖 to the graph

27: 𝑉 ← 𝑉 ∪ {𝑞𝑖 }
28: 𝑖 ← 𝑖 + 1
29: return (𝑉 , 𝐸)

(1,4)

(1,9)

(2,7) (7,9)

(2,4)

4 6 3

33
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Figure 2: Example Query Dependency Graph

Figure 2 shows an example of a query dependency graph. For

clarity, each node is labeled with a query expression, and each edge

is labeled with the size of the query’s coverage. Note in the figure

that an edge from 𝑣 to 𝑧 is considered redundant according to the

graph’s definition, and is therefore removed: Although 𝑣 � 𝑧, the

second edge property is not satisfied, due to the existence of 𝑥 .

Algorithm 1 produces the query dependency graph based on the

definition of𝐺 given above. The graph-building algorithm inputs a

batch of queries 𝑄 = {𝑞1, 𝑞2, ..., 𝑞𝑛}, and relies on a presorting step

on 𝑄 (Line 6) to work efficiently. Essentially, a query 𝑞𝑖 precedes

𝑞 𝑗 in ordering if:

𝑞𝑖 .𝑠𝑡𝑎𝑟𝑡 < 𝑞 𝑗 .𝑠𝑡𝑎𝑟𝑡 ∨ (𝑞𝑖 .𝑠𝑡𝑎𝑟𝑡 = 𝑞 𝑗 .𝑠𝑡𝑎𝑟𝑡 ∧ 𝑞 𝑗 .𝑒𝑛𝑑 > 𝑞𝑖 .𝑒𝑛𝑑)
Figure 3 illustrates an example of this query presorting step. Each

horizontal bar represents the start and end points of a query, and

they are sorted in top-down order. As a first pass, the queries are

grouped by their 𝑞.𝑠𝑡𝑎𝑟𝑡 points. Within each group, the queries

are further sorted in descending order of their 𝑞.𝑒𝑛𝑑 points. This

sequencing is an optimization that allows the graph-building algo-

rithm to stop early in several cases described below.

q.start

q.end

Figure 3: Query Presorting

After presorting, the algorithm examines each query iteratively.

For each query 𝑞𝑖 , an inner loop (Line 14) finds all non-redundant

queries 𝑞 𝑗 that provide some cover to 𝑞𝑖 . The conditional on Line

17 exploits the presorted order by short-circuiting out of the inner

loop once 𝑞 𝑗 no longer covers 𝑞𝑖 . The conditional on Line 18 further

ensures that an edge from 𝑞 𝑗 is not added if 𝑞 𝑗 exceeds the range of

𝑞𝑖 . To reduce the size of the graph, redundant edges are not added.

This is accomplished by keeping track of the current maximum end

bit vector ID of a node’s edges,𝑚𝑎𝑥𝐸𝑛𝑑 , and only adding a new

edge if it has a larger 𝑞.𝑒𝑛𝑑 ID, thus providing new coverage.

To show an example of Algorithm 1, suppose batch𝑄 is input as

𝑄 = (𝑣,𝑤, 𝑥,𝑦,𝑤, 𝑧), which are the query nodes depicted in Figure 2.
The presorting step would impose the sequence: (𝑧,𝑤, 𝑥, 𝑣,𝑦). The
duplicate pairs of𝑤 = (1, 4) are placed after 𝑧 = (1, 9), since𝑤 ’s end

point is smaller, which ensures that𝑤 covers query 𝑧. Furthermore,

the duplicate copy of 𝑤 is collapsed, since it does not add new
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information to the graph. After presorting, the algorithm goes on

to examine nodes in the presorted sequence, beginning with node 𝑧.

Edges from𝑤 and 𝑥 are added, because they non-redundantly cover

𝑧. The node 𝑣 is also considered as a candidate for linking 𝑧, but

because 𝑣 ’s end point (4) does not exceed the current maximum end

point of 7 (via the earlier addition of 𝑥 ), 𝑣 is deemed redundant and

the edge (𝑣, 𝑧) is precluded. Finally, 𝑦 is added as a non-redundant

predecessor to 𝑧. This process repeats for all other queries in the

batch (outer loop), producing the remaining edges (𝑣,𝑤) and (𝑣, 𝑥).
The result is the dependency graph shown in Figure 2.

The graph-building algorithm runs in 𝑂 ( |𝑉 | + |𝐸 |), since in the

worst case, every node needs to test for an edge with every other

node with a greater or equal starting bit vector ID. Although this

complexity is not ideal, it bears pointing out that 𝐺 is generally

sparse in practice. Moreover, the query dependency graph pays

dividends when it is used to determine the order in which cached

results are evicted/replaced, and the savings in query workload

execution time easily offsets the graph-building overhead.

3.3 Least Aggregated Coverage Replacement
Least-Aggregated-Coverage (LAC) is our novel cache replacement

policy designed to work efficiently with the Shortest-First schedul-

ing algorithm. LAC uses a priority queue to order cached results

based on the total amount of coverage they provide within the

query dependency graph, and results with the least aggregated

coverage are evicted when the cache is full.

Algorithm 2 addEntryLAC

1: Input
2: 𝑞 Query to cache

3: 𝐺 Query dependency graph

4: 𝑃𝑄 Ordered multimap of priorities and cache entries

5: Output
6: None

7: ▷ Calculate the aggregated coverage of 𝑞. Serves as priority.

8: 𝑐𝑜𝑣𝑞 ← |𝐺.𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑞) | × |𝑞 |
9: 𝑃𝑄.𝑎𝑑𝑑 (𝑐𝑜𝑣𝑞, 𝑞)
10: ▷ Update priorities of existing cache entries

11: for all 𝑝 ∈ 𝐺.𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑞) do
12: if 𝑃𝑄.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑝) then
13: 𝑐𝑜𝑣𝑝 ← 𝑃𝑄.𝑔𝑒𝑡𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑝) − |𝑝 |
14: 𝑃𝑄.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑝)
15: 𝑃𝑄.𝑎𝑑𝑑 (𝑐𝑜𝑣𝑝 , 𝑝)

The aggregated coverage of a query node is calculated by examin-

ing the count of its direct successors. If a query 𝑞 node directly feeds

into 𝑛 succeeding nodes, then its aggregated coverage is |𝑞 | ×𝑛. We

assume that query results that have higher aggregated coverage

implies that it is more valuable to the cache and should be kept

longer in the priority queue. We adhere to the standard definition

of a priority queue, in which entries with lower values imply higher

priority, and in our case, queries with higher aggregated coverage

will be farther from the head.

The procedure to add a result to the cache is given in Algorithm 2.

The algorithm starts by obtaining all successor nodes of the given

entry, 𝑞 to calculate 𝑞’s aggregated coverage 𝑐𝑜𝑣𝑞 . The new entry,

along with its coverage, are then added to the priority queue. Since

the cached predecessors of 𝑞 were used to aid in the execution of

𝑞, they now hold less value in the cache. For each of 𝑞’s cached

predecessor 𝑝 , the algorithm reduces 𝑝’s priority by |𝑝 | (Line 13).
The predecessors are reinserted in the priority queue to adjust their

positions (lines 14-15).

For clarification, suppose in Figure 2 that query node 𝑥 is being

added to the cache. It would have an aggregated coverage value of 6,

since only one other query (𝑧) is dependent on 𝑥 . Furthermore, 𝑥 ’s

predecessor node 𝑣 , which had an aggregated coverage of |𝑣 | × 2 =
6, must reduce its aggregated coverage to 3. The reason for this

reduction is because, after 𝑥 ’s execution, the edge (𝑣, 𝑥) is no longer
useful in the current query batch, so 𝑣 contributes to one fewer

outstanding query.

In order to support all the required operations for LAC, a mul-

timap with both key and value searching is used to implement a

priority queue. The data structure consists of a red-black tree that

uses priority values for keys (lower values imply higher priority)

and stores hash sets of query nodes, as well as a hash map that

uses the queries as keys and stores priority values. The red-black

tree provides the priority queue functionality, while the hash map

allows entries to be accessed and updated with negligible cost. With

this implementation, determining whether an entry exists can be

done in 𝑂 (1) time, and adding, accessing, or removing an entry to

the queue can be done in amortized𝑂 (log𝑛). Thus, adding an entry

to the cache can be performed in 𝑂 ( |𝐸 | log |𝑉 |), when accounting

for updating the predecessors’ priorities.

4 EVALUATION AND RESULTS
This section presents a detailed experimental evaluation of our

caching framework. The caching structures and bitmap processor

were implemented in Java, and experiments were executed on a

machine running Windows 10 Pro, equipped with an 8-core Intel

Core i7-9700K at 3.60 GHz, 64 GB of RAM, and a 2 TB HDD.

4.1 Data Set and Query Workload
We used the TPC-H 2.18.0 toolkit [1] to create the data set and query

workload used in our experimental studies. The TPC-H database

models an e-commerce enterprise. Our experiments are carried

over TPC-H’s lineitem table. It contains 6 million rows and 16

columns. We chose the lineitem table due to its central role in

the TPC-H benchmark. We created a large bitmap index over the

table’s SHIPDATE column due to this column’s high dimensionality.

The bitmap index contains 2526 bins and 6 million rows.

The TPC-H toolkit is used to generate queries over the lineitem
table. Each query can be generated to select rows in lineitem
given a pair of start and end SHIPDATE values, providing us with

a set of 3, 191, 601 possible unique queries. To create each of our

query batches, we randomly draw from this set of possible queries

according to the desired batch size.

4.2 Experimental Setup and Metrics
Our system processes a batch of multiple queries at a time. A batch

of queries are submitted to the scheduler all at once for processing.

If no scheduling policy is used (labeled sched-NONE in our results),
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then the queries are dispatched for execution in the order they ar-

rived. When running Shortest-First scheduling (labeled sched-SF),
the batch of queries is reordered in ascending order of size before

dispatching to the query processor.

We also define the metrics used for evaluation. A cache miss is
counted for each bitmap bit vector that is fetched for processing: A

query that selects 𝑘 bit vectors could result in 𝑘 misses in the worst

case, and as such, the miss rate is defined to be the total number of

misses over the total number of bins requested across all queries in

a batch. We also define total time to be the overall time elapsed to

process the lifecycle of a batch of queries. That is, in addition to the

query execution and cache-hit times, the total time includes any
overhead to pre-analyze the batch as well as any cache-replacement

overhead.

4.3 Evaluation of Shortest-First Scheduling
In the first set of experiments, we are interested in evaluating the

effectiveness of the Shortest-First scheduling policy. We observed

the execution time and total number of misses over batches of size

1000, 2500, 5000, and 10,000 queries that were generated by TPC-H.

To run this experiment, we assumed an infinite-capacity cache so

that cache-replacement would not be invoked, and therefore all

query results are unconditionally placed in the cache for reuse. This

allows us to evaluate Shortest-First in isolation.
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Figure 4: Performance of Shortest-First Scheduling

The results presented in Figure 4 show the total execution times

per each batch size. Across the increasing batch sizes, sched-SF
scheduling yields significant speedups over the runs in which

no scheduling is applied. It is worth noting that the total times

here include the scheduling overheads of sched-SF. The reported
speedups over unscheduled batches range from 1.5× to 1.76×. Be-
cause the cache capacity is unlimited, and due to sched-SF schedul-
ing having shown to be optimal, this is likely the best performance

that can be achieved from a purely scheduling-only approach.

Batch Size Scheduling Overhead
1000 0 ms

10,000 3 ms

100,000 24 ms

1,000,000 201 ms

Table 1: Overhead of Shortest-First

Next, we isolated the overhead of the sched-SF algorithm on

varying sized query batches. We showed earlier that the sched-SF
algorithm is trivial and can be implemented in 𝑂 (𝑛 log𝑛) time,

where 𝑛 is the number of queries in the batch. The results in Table 1

support this claim, as the negligible overhead of sched-SF seems

to scale gracefully over exponentially increasing batch sizes. This

is a salient result: the sched-SF scheduling algorithm can be safely

recommended irrespective of batch sizes and (as we shall show)

replacement policies.

While running the above experiments, we saw that the caches

grew to substantial sizes, i.e., requiring over 30 GB of data in the

case of 10,000 queries. This cache size is clearly unreasonable in

most practical systems settings. Next, we evaluate how our sys-

tem performs under various cache replacement schemes used to

maintain a fixed capacity.

4.4 Performance of LAC Cache Replacement
This set of experiments stress-test our cache replacement scheme.

The cache capacity for this set of experiments is fixed at 1 GB, a

fraction of the total cache-storage requirements for the workload.

We evaluate the Least Aggregated Coverage replacement policy (LAC)
and compare it against two classic replacement policies: First-In-

First-Out (FIFO) and Least Recently Used (LRU).
The implementation of FIFO uses a linked list, resulting in𝑂 (1)-

time operations to evict and add entries, and the implementation

of LRU uses a min-heap priority queue. When a cached result is

reused, we must update the LRU entry with a new timestamp and

then re-enqueue it, which is 𝑂 (log𝑛). Likewise, when an entry is

to be evicted, the queue must be heapified, also requiring 𝑂 (log𝑛)
time. In contrast, LAC requires 𝑂 (𝑛 log𝑛) time when adding and

removing entries to/from the cache, as was explained in Section 3.3.

We observed that replacement is invoked early in the batch

processing: On a 1 GB cache, the first eviction occurs after the

∼ 350th query in the batch, which means that replacement will be

invoked frequently in all batch settings. This allows us to evaluate

the scheduling policies and the replacement policies in tandem.

We stress-test the scalability of our algorithms under even smaller,

and larger, cache sizes in a later section. We ran experiments using

query batch sizes of 1000, 2500, 5000, 7500, and 10000 and measured

the total time taken to execute each batch.

First, we ran the tests without scheduling (sched-NONE). Fig-
ure 5a shows the total times over various cache-replacement policies

for unscheduled workloads. The results for FIFO and LRU replace-
ment perform quite similarly, but as expected, our LAC replacement

performs poorly due to the fact that it was designed specifically to

reward cached entries that have greater potential for reuse. This

potential, however, is exploited only through the use of a comple-

mentary scheduling policy.

Figure 5b shows the number of misses across batch sizes for the

three replacement policies. Total time is strongly correlated to the

number of misses. And whereas the classical replacement policies

tend to keep miss rates in check for unscheduled workloads, LAC
suffers greatly, resulting in nearly 6× the number of misses com-

pared to either FIFO or LRU. Therefore, our LAC replacement scheme

evicts entries on an almost random nature without a conspiring

scheduling algorithm and should not be used without Shortest-First.
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Figure 5: Total Times and Cache Misses (No Scheduling)

We ran the same experiment using Shortest-First scheduling.

The two plots in Figure 6 again show the total times and miss

count. It is at first unexpected to find that FIFO outperforms LRU,
which is usually not the case in practice. However, recall that when

sched-SF scheduling is used, the short and singleton queries, which
offer less overall reuse value, are executed and cached first. FIFO
evicts these short and singleton results first, leaving the results

belonging to longer queries stored for more potency when reused.

In contrast, LRU rewards the results that are used more frequently,

which means that the short and singleton results will tend to remain

in the cache, consuming valuable space while not offering much

savings in the execution of future queries.

% Change in Cache Misses
Batch Size LAC vs. FIFO LAC vs. LRU

1000 −19.90% −18.96%
2500 −43.67% −50.52%
5000 −54.31% −58.95%
7500 −61.77% −68.70%
10000 −63.75% −71.42%

Table 2: Comparison of Miss Rates (SF Scheduling)
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Figure 6: Total Times and Cache Misses (SF Scheduling)

The strength of the LAC replacement scheme is realized when

it is applied in tandem with sched-SF scheduling. Compared to

sched-NONE, sched-SF scheduling does not significantly impact

the execution times when using FIFO and LRU. However, our LAC
policy was able to reduce the number of misses down to a fraction of

both FIFO and LRU replacement schemes. Drilling deeper into these

results, Table 2 shows that LAC was able to reduce the miss count

by roughly 19% for smaller batches, and up to 71.42% for larger

batches. This reduction corresponds to a rather significant speedup

of 2.85× over FIFO replacement and 3.41× over LRU replacement.

Results in this section were limited to a 1 GB cache. We are also

interested in our algorithm’s performance given smaller cache sizes.

4.5 Impact of Cache Size
In the next set of experiments, we scale across different cache

sizes. In addition to a 1 GB cache, we chose to experiment with

two extreme size settings: a small 256 MB cache and an infinite

sized cache. The total time to execute a batch of 10,000 queries

are plotted in Figure 7. The LAC replacement scheme performs

better than both FIFO and LRU in the 256 MB and 1 GB cache

size configurations, demonstrating the consistency of LAC, when
pressed with even more frequent calls for eviction. On the small 256

MB cache, LAC speeds up execution over FIFO and LRU by factors

of 2.66× and 2.32× respectively. These speedups are slightly lower

than respective speedups of 2.85× and 3.41× over the 1 GB cache.

This is due to the fact that replacement is called more often to
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maintain the smaller cache size, and that LACAddEntry() carries a

larger overhead than either FIFO or LRU.
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Figure 7: Total Times across Cache Sizes (Batch Size = 10000)

On the other end, an infinite sized cache does not ever invoke

a replacement algorithm, so the lines converge in the plot. Inter-

estingly, the total time to execute the 10,000 batch using infinite

cache is 148, 334 ms, while the 1 GB cache using LAC replacement

required 233, 240 ms — just 36% slower, while requiring around 1/30
of actual cache storage. In contrast, the 1 GB cache using FIFO is
79% slower, and LRU is 83% slower than cache with infinite capacity.

However, LAC does incur an initial graph-building overhead

(which is incorporated in all above results). Recall from Section 3

that the time complexity of the graph-building algorithm is qua-

dratic on batch size. Table 3 lists the graph-building overhead in-

curred for various sized batches. Graphs for batch sizes of 100K and

over are prohibitively slow to build (over 30 minutes to prepare a

batch of one million queries). This result signifies that LAC should

only be used when batch sizes are not large, and that FIFO and LRU,
which incur no pre-processing overhead, would still be appropriate

for very large batches.

Batch Size Graph Building Time
1000 50 ms

10,000 162 ms

100,000 10,208 ms

1,000,000 1,893,998 ms

Table 3: Overhead of Shortest-First

5 RELATEDWORK
Ideas in this paper trace back to seminal work in multi-query opti-

mization [32, 33]. This area of research is concerned with extracting

performance via the observation that query processors may find

opportunities to reuse intermediate results in other queries that are

concurrently running. As detailed in [34], there are generally two

classes of approaches toward multi-query optimization: online and

offline. Online optimization, as done in QPipe [18], DataPath [2],

and others [31], are executed on a per-query basis. Work in this area

leverages both the commutativity of commonly-used relational op-

erators, and the fact that the order in which data blocks are fetched

is generally inconsequential in the relational data model. As such,

the sequencing of relational operators can be dynamically reordered

upon execution to optimize query plans. However, the potential

for reuse that an online optimizer can extract is somewhat limited

because each query is considered in isolation [13].

In contrast, offline multi-query optimizers are used to analyze

batches of queries prior to dispatching them for execution [13,

26]. Despite the higher overhead cost for analysis compared to

online models, a more in-depth analysis of a batch of queries can

be performed — uncovering how their operators and result sets

relate to each other. A finalized schedule of queries is produced

to minimize batch execution time. Our proposed techniques also

subscribe to the offline approach, and therefore, we shall focus this

section on offline query optimizers.

Manegold, et al. describe an offline query optimizer for the colum-

nar database, MonetDB [26]. They build a dependency graph to

inform the query processor on which cached results can be reused

rather than running redundant query sub-expressions. The work

differs from ours in that it did not consider cache replacement,

or attempt to execute queries out-of-order to exploit reusing par-

tial results. Luo, et al., described a workload-reordering scheme

to increase parallel access to buffered data blocks for scan-based

queries [24]. SharedDB [13] groups together similar query types,

and creates a global query plan, which is a directed acyclic graph

containing all queries and their shared operators. Expensive opera-

tors (such as joins, sorting, and group-by) are processed and results

are kept in situ. Any batched queries requiring a subset of those

results can have those results routed as part of its query plan.

The area of researchwithinmulti-query optimization fromwhich

we draw the most inspiration is semantic caching [9, 21]. This ap-

proach groups together query results (records/tuples) into semantic
regions, which are constraint expressions that describe the records

that fall into the region. A query first probes the available semantic

regions to find subsets of results that can be unioned and reused,

followed by a “remainder” query that requests the processor to

retrieve the difference. Cache replacement is done on the unit of

semantic regions, using temporal or distance metrics.

The current work builds on our previously implemented se-

mantic cache of bitmap indices [28]. The query intervals assigned

to each cached result are tantamount to the semantic regions de-

scribed above. Work in semantic caching are varied, mainly finding

applications in client-server paradigms to reduce data transfers [5–

7, 11, 14, 15, 20, 22]. Our work differs in that we employ query

reordering in addition to a novel cache-replacement policy to mini-

mize cache misses.

Finally, our cache shares some similarities with materialized
views [3, 16]. A materialized view is a precomputed query result

(table) that is stored back into the database. Views commonly store

the derived results of an expensive operation, such as a join or sub-

query, so that future queries might avoid recomputing the costly

expression. Our system is fundamentally different from material-

ized views in that it does not systematically generate precomputed

results in hopes of being useful at a later time. Also unlike material-

ized views, our system cache is not persisted in the database, so we

are not as concerned with updating the view when the underlying

tables change.
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6 FUTUREWORK AND CONCLUSION
This paper investigatesworkload scheduling and cache-replacement

schemes in a data-storage framework. Our system accepts con-

current queries to an underlying data store, and seeks to execute

batches of queries with high throughput. Queries are scheduled in

a shortest-first manner, which is optimal when cache capacity is

unconstrained. Under most environments, in which cache capacity

is limited, we found that classical replacement schemes do little to

exploit the existing inter-query dependencies in a workload batch.

To this end, we further presented a graph model that captures query

dependencies and their (potential) contributions toward accelerat-

ing the overall execution of the workload. Our replacement policy,

which is informed by this dependency graph, achieved significant

speedups over classical replacement algorithms over the TPC-H

benchmark.

In the next stages of our research, we plan to explore more

sophisticated scheduling algorithms that work better with the LAC

cache. For instance, by grouping queries that reuse the same result

vectors, those results could be fully utilized more quickly, allowing

that cache space to be freed up with less penalty. Additionally,

we intend to explore the usage of search algorithms for query

scheduling, with a focus on approximating, interruptible algorithms

that can provide flexibility to fit performance constraints.
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