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Abstract—Web and service applications are generally I/O
bound and follow a Zipf-like request distribution, ushering in
potential for significant latency reduction by caching and reusing
results. However, such web caches require manual resource
allocation, and when deployed in the cloud, costs may fur-
ther complicate the provisioning process. We propose a fully
autonomous, self-scaling, and cost-aware cloud cache with the
objective of accelerating data-intensive applications. Our system,
which is distributed over multiple cloud nodes, intelligently
provisions resources at runtime based on users cost and per-
formance expectations, while abstracting the various low-level
decisions regarding efficient cloud resource management and data
placement within the cloud from the user. Our prediction model
lends the system the capability to auto-configure the optimal
resource requirement to automatically scale itself up (or down)
to accommodate demand peaks while staying within certain cost
constraints while fulfilling the performance expectations. Our
evaluation shows a 5.5× speedup for a typical web workload,
while staying under cost constraints.

I. INTRODUCTION

The current generation of computing devices is contributing
to a proliferation of data. One of the greatest technological
challenges of the 21st century is inarguably how we respond
to a new era of computing, which is increasingly being made
accessible over the web. A recent foray into meeting this
challenge is the advancement of cloud computing. In partic-
ular, the cloud’s Infrastructure-as-a-Service (IaaS) framework
allows for elastic computing, i.e., instantaneous pay-as-you-
go access to virtually infinite storage and compute resources
[1]. Elasticity in this context refers to the ability to allocate
capacity on demand and to relinquish that capacity when it
is no longer required or when allocation costs reach a certain
threshold.

Elasticity has found many uses in capacity expansion for a
number of applications [2], [3], [4], [5], [6]. Among these, web
and service oriented applications are particular beneficiaries of
elastic computing because opportunities abound for interme-
diate caching and reuse. For instance, consider the ubiquitous
three-tier web architecture: Users submit requests to a web in-
terface, which takes the queries and executes a script to retrieve
potentially large amounts of data from a database back-end.
The retrieved data may be further aggregated and restructured
for presentation before returning back to the user. As today’s
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web and service-oriented applications become increasingly
more data intensive, the ability to cache precomputed results
in the cloud can significantly reduce request latencies [7], [4].

Web traffic can be very dynamic, mostly observing diurnal
variability, but can also have unpredictable peaks. In such a
variable traffic environment, it would be desirable to have an
in-cloud cache that expands and contracts correspondingly to
meet performance or SLA requirements. However, managing
cloud resources while considering the cost/performance trade-
off is nontrivial. For a cloud based cache to be both cost-
effective and efficient, the underlying structure of the virtual
storage hierarchy, i.e., machine-memory, local/network disks,
and persistent storage, must be considered in terms of costs.

As a classic example, we can consider the growth in April
2008 experienced by Animoto, a web service application that
produces videos from photos, video clips, and music. The
application ramped from 25,000 users to 250,000 users in
just 3 short days, signing up 20,000 new users per hour at
peak. Animoto went from using 50 back-end servers (Amazon
EC2 instances) to over 3,400 in just 3 days and became a
cloud computing success story overnight [8]. Undoubtedly,
the ability to rapidly scale up on demand is of paramount for
a cloud data storage. However, the economics of seemingly
limitless capacity to scale up might not be acceptable for all
situations. For certain applications, taking a performance hit
to keep the cost down might be perfectly reasonable. Our cost
and performance models offer a solution focused on resource
usage costs to accelerate data-intensive computing.

Our goal is to develop an easily deployable cache on the
cloud that autonomously adjusts provisioned IaaS resources
based on a user’s cost and performance constraints. By
leveraging an artificial neural network for load prediction,
we have developed cost and performance models to inform
a bi-objective optimization. We will show how models can
enable an elastic in-cloud cache to make autonomous decisions
on scaling, i.e., expanding/contracting resources in order to
gracefully adapt to varying web loads while upholding user
preferences on cost and performance without requiring manual
intervention.

Our research utilizes the Amazon Web Services (AWS)
IaaS framework as a testbed. The principal contribution of
this research is a dynamic model of an elastic cache, which
facilitates the abstraction of various cost/performance tradeoff
of cloud resources and graceful cache scaling within a user’s



budget with the ultimate goal of accelerating web applications.
We have evaluated our cloud-based web cache, and we show
that we can accelerate web requests for files of the typical size
magnitudes by over 5×, and even more significantly for data
in the tens of MBs of magnitude.

The remainder of this paper is organized as follows. The
next section gives an overview of our cache system. Section III
describes our models and algorithms. The system evaluation
is presented in IV. We present related works in Section V, and
conclude in Section VI.

II. SYSTEM BACKGROUND

Our cache, situated in the cloud between the web application
and users, provides an abstraction to the various nuanced cost-
benefit tradeoffs associated with cloud resources. We utilize
the Amazon Web Services cloud, which consists of two major
services: Elastic Compute Cloud (EC2) and Simple Storage
Service (S3). EC2 offers users on demand allocation of virtual
machine instances at an hourly rate, determined by instance’s
CPU, memory, and I/O capacity. S3, on the other hand, is a
highly reliable persistent store. It allows users to store data
objects using an FTP-style interface, and users are charged
a rate per GB-month stored. In this section we present the
architecture of our elastic web cache, which is depicted in
Figure 1.
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Fig. 1. Elastic Web Cache Overview

The cache is three-tiered: the Cache Coordinator (denoted C
in the figure) receives users’ HTTP (SOAP/REST for services)
requests and forwards them to the appropriate EC2 instance
using consistent hashing [9]. Each EC2 instance stores a
portion of the cached data in memory or on disk, which
offers comparatively faster I/O relative to S3, but is more
expensive in terms of costs. At the time of writing, EC2
pricing ranges anywhere from $0.08 to $1.80 per instance-hour
allocated, depending on the instance type’s capabilities. In this
paper, we experimented with a middle-of-the-road m1.large
instance type, which is $0.32 per instance-hour for 7.5 GB
memory and 4 virtual compute units. Over time, the number
of allocated EC2 instances can grow or shrink to handle the
current workload.

The data organization on each EC2 instance is a key-
value store, using a B+-Tree [10] to provide fast searches
over its key space. Because EC2 can be costly and instance
memory is limited, we use the least recently used (LRU) cache

replacement scheme [11]. Any evicted data object is migrated
down to the S3-level. While S3 is a much cheaper storage
option than the EC2-resident cache (roughly $0.125 per GB-
month), its I/O latency is much higher.

Users have the option to input the following two parameters
to communicate their preferences: (1) a cost constraint C
and (2) a cost-priority parameter, λ, 0 ≤ λ ≤ 1. The cost
constraint C serves as the upper-bound for the dollar amount
that can be spent on the cache per time-unit. This constraint
essentially restricts the cache from scaling up uncontrollably
in response to a sudden spike in demand and thereby, violating
a user’s budget. The cost-priority parameter, λ, on the other
hand, is a knob that allows users to tune the system according
to their preference of performance within the limits of their
cost constraint. A high value of λ implies that the system
should strive to keep costs as far below constraint C as
possible. For instance, λ = 1 should signify our system to
configure an S3-only data organization, to save costs, even if
C is set to be far greater than the costs associated with the S3-
only store. A low value of λ allows the system to aggressively
allocate resources to increase performance, while staying just
below the budget constraint C.

The Cache Coordinator manages the allocation of cloud
resources and reconciles the user parameters at all times. For
instance, upon any risk of the cache exceeding its current
capacity in the near-term, it allocates a new instance, if within
user constraints. Conversely, the coordinator may also consol-
idate instances to reduce cost. To attain the unique features of
our cache system (i.e., auto-scaling and cost awareness) the
coordinator employs a prediction model that yields a cache
configuration with optimal cost and performance for the user.

III. COST AND PERFORMANCE OPTIMIZATION

The crux of our self-managed cost aware cache is the cache
coordinator’s utilization of a mathematical prediction model
which employs a bi-objective optimization to configure the
underlying resource allocation for the cache. The goal of
our model is to dynamically analyze cache performance over
time and adjust resource requirements in order to strike the
appropriate balance to achieve the user’s goals in terms of
cost and performance expectations.

The two opposing objectives for our system are to minimize
the cost to store data in the cache and maximize performance
by allocating enough nodes to facilitate a larger number of
hits. Because these two objectives conflict, there will be a
cache configuration with the highest performance, another
with the lowest cost, and a number of configurations that
are compromises between performance and cost. This set of
trade-off designs is known as a pareto set, and we solve a bi-
optimization problem to extract the pareto-optimal solution for
our system. To allow for a uniform comparison between per-
formance of various objectives, we normalize both objective
measurements to a range between 0 and 1.



Notation Description

tF , tS , tM Average latency for a fast hit, slow hit, and
miss

HF , HS Fast hit rate, slow hit rate

EQT (t) Effective query time at t

Cusage(t) Cache usage cost per hour at t

Cmin(t) Min possible usage cost per hour at t

Cmax(t) Max possible usage cost per hour at t

Q̂(t) Predicted number of queries at t

L̂(t) = Q̂(t)×D Predicted load at future time t

PEC2 Price per EC2 instance-hour

PS3 Price of S3 usage per MB-hour

RF , RS , RM Data access rate (MBps) on a fast hit, slow
hit, and miss, respectively.

T EC2 node capacity (MB)

D Average data size (MB)

N Optimal number of EC2 nodes at t

S Optimal number of S3 storage used at t

TABLE I
NOTATIONS FOR SYSTEM MODELS

A. Modeling the Performance Objective

From empirical observations, we make the following as-
sumptions in our cache design: (1) data stored in EC2 nodes
(either in memory or disk) are retrieved faster than from S3,
and (2) the cost per storage-hour is much higher for data stored
in EC2 than for S3.

We will first model the performance objective as the effec-
tive query request time (EQT ). If the requested data resides
in any of the allocated EC2 instances’ memory or disk, it is
considered a fast hit (Figure 1) due to faster I/O and data
organization. If the requested data is not found in any of the
cooperating EC2 instances, we search the persistent store S3,
resulting in a slow hit. Clearly, reducing the number of slow
hits among the total hits will yield better performance. On a
cache miss, the web request or service application is invoked.
Its resulting data is sent to the user as well as to the cache.
Next, we can define the query request latency as the time
between the arrival of a request and retrieval of the queried
data.

Equipped with these metrics we formulate the performance
objective as follows. For readability, Table I provides a list
of the notations used in defining the performance and cost
objectives. Because we will observe the number of requests in
fixed time intervals (t = 0, 1, 2, . . .), we can model our system
discretely. Let

Q(t) = QF (t) +QS(t) +QM (t) (1)

denote the total number of incoming query requests at time

t, where QF (t), QS(t), and QM (t) refer to the number
of queries that result in fast hits, slow hits, and misses,
respectively. If we further let tF , tS , and tM denote the average
query latency for a fast hit, a slow hit, and a miss, then we can
define the effective query request time at time t as follows,

EQT (t) = HF × tF +HS × tS + (1−HF −HS)× tM
(2)

where HF = QF (t)/Q(t) and HS = QS(t)/Q(t) represent
the fast hit and slow hit rates respectively. The normalized
performance objective is given below,

fp =
EQT (t)− tF
tM − tF

(3)

To inform our algorithms on making resource allocation
decisions, we must relate fp to system parameters that can be
adjusted (e.g., number of EC2 nodes that should be allocated).
Let Q̂(t) denote the predicted number of requests at time t and
let D denote the average data size (MB), then L̂(t) = Q̂(t)×D
is the predicted system load in MB at time t. To predict future
requests Q̂(t), we use an artificial neural network (ANN)
in our implementation [12]. We employ a back-propagation
algorithm for feedforward networks with sigmoid activation
function to train the ANN. Our reasoning for choosing this
particular variant stems from the fact that studies show that
this form of ANN offers a simple straight forward extension
to a widely used classical way to model time series [13].

We further let T , PEC2, and PS3 denote the system param-
eters from the cloud. Namely, T is an EC2 node’s capacity
(memory and disk) in MB, PEC2 is the price of an EC2
instance per hour, and PS3 is the price of S3 usage per MB
hour. The goal is to find the optimal number of EC2 nodes, N ,
and the optimal amount of S3 storage (in MB), S, that should
be used by the system at time t. Now we can approximate the
optimal values for the above parameters as follows,

QF ≈ N × T/D (4)
QS ≈ S/D (5)

QM ≈ (L̂(t)− [N × T + S])/D (6)

where N × T and S denote the data amount residing in
cooperating EC2 nodes, and the data amount residing in S3,
respectively. Assuming an LRU replacement policy [11], these
approximations are justifiable because the total number of hits
are proportional to the number of objects whose values reside
in the cache. The same reasoning allows us to approximate
the fast hits as the number of objects whose values reside in
memory and disk, and the slow hits as the number of objects
whose values reside in the persistent storage. The effective
query time, EQT (t), for the system can be derived as follows,

EQT (t) =
1

Q̂(t)

(
N × T
RF

+
S

RS
+
L̂(t)− (N × T )− S

RM

)
(7)

where RF , RS , and RM to represent the data access rate
(MBps) on a fast hit, a slow hit, and a cache miss, respectively.
Also, the lowest and the highest bounds on query latency, i.e.,



the average latency on a fast hit and the average latency on a
cache miss can be determined as,

tF =
D

RF
, tM =

D

RM
(8)

After substitution, we derive our performance objective func-
tion,

fp =

1
Q̂(t)

(
N×T
RF

+ S
RS

+ L̂(t)−(N×T )−S
RM

)
− D

RF

D
RM
− D

RF

(9)

B. Modeling the Cost

Depending on a user’s cost-performance preferences, the
cache coordinator decides where data should be placed in
cooperating EC2 instances or in S3. We define the cost
objective fc to be the normalized total usage cost over the
various cloud storage options,

fc =
Cusage(t)− Cmin(t)

Cmax(t)− Cmin(t)
(10)

such that Cusage(t) ≥ Cmin(t)

where Cusage(t), Cmin(t), and Cmax(t) refer to the cache
usage cost per hour at time t, the least possible cost per hour
(with S3-only configuration), and the maximum possible cost
per hour (with an EC2-only configuration), respectively. We
note that Cmin is a lower-bound on Cusage , To minimize
the cost objective, the goal is to use as few EC2 instances as
possible to store the data at time t.

Like before, we must again relate the above cost variables
to controllable system parameters.

Cmin(t) = L̂(t)× PS3 (11)

Cmax(t) = L̂(t)/T × PEC2 (12)
Cusage(t) = N × PEC2 + S × PS3 (13)

where L̂(t)/T , N × PEC2, and S × PS3 indicate the number
of EC2 nodes required to store all of data in instance memory
and disk, the cost for the allocated nodes, and is cost for the
persistent storage used, respectively.

After substitution and normalization, the cost objective
function can be fully expressed as follows,

fc =
[(N × PEC2) + (S × PS3)]− (L̂(t)× PS3)(

L̂(t)
T × PEC2

)
− (L̂(t)× PS3)

(14)

C. Solving the Optimization Problem

Recall that there are two user inputs to exploit the cost-
performance tradeoff: (1) C the cost constraint per time unit,
and (2) λ, 0 ≤ λ ≤ 1. A higher value of λ implies that
the cache coordinator should strive to keep costs as low as
possible. Our problem fits classical weighted sum approach,
which assigns a weight wi to each normalized objective func-
tion fi(x) so that the problem is converted to an aggregated
single-objective problem with a scalar objective function as
follows:

argmin
x

F (x) = w1f1(x) + w2f2(x) + . . .+ wmfm(x) (15)

where x denotes the system parameters, fi(x) is the normal-
ized objective function for the ith objective, and

∑
wi = 1

for a given weight vector w = w1, w2, . . . , wm. Known also
as the apriori approach because it requires the user to provide
the weights before optimization can begin, this method yields
a single solution. Using the weighted sum method, we derive
the following scalar objective function for our elastic cache,

argmin
x

F (x) = (1− λ)fp(x) + λfc(x) (16)

subject to: ∀t : Cusage(t) ≤ C

which satisfies the user specified cost constraint, C, the
maximum allowable usage cost, at all times. Through solving
argminx F (x) for the tuple 〈N,S〉, we obtain the optimal
number of nodes and persistent storage to allocate for an
application.
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Fig. 2. Steps to Compute Optimal Number of Nodes

To solve our multi-objective optimization problem, we per-
form a linear search over all possible values of N (number
of instances allocated) to find the minimum of the weighted
objective function. We argue that realistically this linear search
does not increase the time complexity of the algorithm by
much since Amazon has constant limits on maximum instance
allocation, thereby keeping the value of N small enough to
perform an efficient linear search. In the general case, a binary
search can be employed to narrow down a likely value for N
assuming both objectives are increasing functions.

The major steps in our algorithms towards determining the
optimal resource allocation are depicted in Figure 2. Our first
step is to narrow the search space for the optimal number of
nodes N by only considering the range of nodes that yields
Cusage(t) ≤ C, satisfying the user’s cost constraint.

Algorithm 1 inputs the user’s cost constraint C, the load
L, and pricing data for EC2 and S3. This algorithm returns
the resource configuration with the highest cost that can be
allocated while meeting the user cost constraint C. On lines
(1-6), we compute N , the minimum number of EC2 nodes
needed to handle a given load L. Lines (4-5) returns a possily
smaller number of nodes required to accommodate the data
space, giving us an upper bound on performance (and cost).
In lines (7-19), we compute the S3 storage allocation that is



required to hold any data objects exceeding the EC2 node
storage.

Algorithm 1 maxResources (C, L, PEC2, PS3)
1: . Maximum nodes that can be allocated while staying

within budget
2: N ← bC/PEC2c
3: . If budget too high, only allocate nodes required to

accommodate load
4: if N > dL/T e then
5: N ← dL/T e
6: end if
7: S ← 0
8: . If load is greater than total node capacity then
9: . if budget allows, use S3 storage

10: if L > (N × T ) then
11: if (C − (N × PEC2)) > 0 then
12: . Budget allows S MB of S3 storage,
13: S ← (C − (N × PEC2))/PS3

14: . but the required storage might be less
15: if (L− (N × T )) < S then
16: S ← L− (N × T )
17: end if
18: end if
19: end if
20: return 〈N,S〉

While Algorithm 1 optimizes the resource allocation for the
given cost constraint, Algorithm 2 further restricts the resource
configuration according to the user’s cost priority parameter, λ.
On line 2, we first retrieve the highest performing 〈N,S〉 pair
under constraint C. Next, we compute the aggregate objective
function given in Equation 16 using 〈N,S〉 and λ. Then on
lines (6-13), we iterate over decreasing values of EC2 nodes
ni to recompute the objective function and return the ni value
resulting in the minimum.

Algorithm 2 optimalNodes (C, λ)
1: . Get the most expensive resource configuration while

staying within budget
2: 〈N,S〉 ← maxResources(C)
3: . Solve optmization (Eq. 16) for the given 〈N,S〉 pair
4: min f ← computeObjective(N,S, λ)
5: opt n← N
6: for ni = N − 1 downto 0 do
7: si ← (C − (ni × PEC2))/PS3

8: fi ← computeObjective(ni, si, λ)
9: if fi < min f then

10: min f ← fi
11: opt n← ni
12: end if
13: end for
14: return opt n

IV. SYSTEM EVALUATION

In this section, we initially describe our experimental setup,
followed by evaluation results.

A. Experimental Setup

The environment for our experiments is on Amazon’s EC2
cloud. We consider only m1.large instances, each having
7.5 GB of memory with 4 virtual EC2 cores where each core
has the processing power equivalent to a 1.0-1.2 GHz 2007
Opteron or 2007 Xeon processor on a 64-bit platform. Each
of these instances is loaded with an Ubuntu Linux image.

Our web cache is configured as shown in Figure 1. To
introduce geographical diversity, we placed our web workload
requestor and cache nodes in the us-east-1 region and
the web server in us-west-2. The goal for this particular
arrangement with a different locality is to introduce a slight
network latency. This scenario is quite common for web
applications where the front-end servers are distributed around
the world at the edge of the web to place them in proximity to
the users, and yet rely on a distant back-end server. We used
the Surge web traffic generator [14] to produce 15,000 file
objects (amounting to 4GB) and 200,000 HTTP GET requests
on these objects over a Zipf distribution. These files are stored
and served by the us-west-2 node. Our cache is essentially
an in-core key-value store, where key represents the filename
and value being the file content.

The cache coordinator, deployed on a large EC2 instance,
listens for and responds to client requests. The coordinator
is also responsible for monitoring the overall cache capacity
and subsequently allocating/deallocating additional cooperat-
ing EC2 server nodes within the same AWS region that work
together to provide the optimal elastic cache storage for the
user.

We will now discuss the experimental setup behavior
through the statistical distribution of the data set and the traffic
requests. Figure 3(a) demonstrates the cumulative distribution
function (CDF) of file sizes for the 15,000 files in the data
repository. The files in our experimental setup range from
1KB to 10MB in size, with over 50% of those files falling
between 10KB to 100KB range, as seen in the CDF. To show
the workload distribution, Figure 3(b) depicts the probability
density function (PDF) of a request for a particular file of
a certain magnitude in our data set over the 200,000 HTTP
requests that are generated.

B. Cache System Evaluation

The empirical validation of our original hypothesis of users
availing our self-managed cache to accelerate Web services
applications makes up this section. Figure 4 juxtaposes the
average query latencies ensuing from two separate experimen-
tal runs of our system, one utilizing the cache and the other
bypassing it altogether. The horizontal axis of the graph shows
the total number of HTTP requests processed as time advances.
The vertical axis exhibits the average request latency, which
is averaged every for 1000 requests processed.



1000 10000 100000 1x106

File Size (bytes)

0

0.2

0.4

0.6

0.8

1

C
D

F

(a) CDF of File Sizes on Server

1000 10000 100000 1x106 1x107

File Size (bytes)

0

0.2

0.4

0.6

0.8

1

PD
F 

of
 R

eq
ue

st
s

(b) PDF of Request Size
Fig. 3. File and Request Distributions

0 50000 100000 150000 200000

Requests

0.1
0.2
0.3
0.4
0.5
0.6
0.7

R
eq

ue
st

 L
at

en
cy

 (s
ec

)

no-cache

with-cache

Fig. 4. Query Request Latency

0 50000 100000 150000 200000

Requests

0

0.2

0.4

0.6

0.8

1

H
it 

R
at

e

Fig. 5. Hit Rate

A significant speedup is evident after only a few thousand
requests, due to the Zipf-based workload distribution [15],
which web requests generally follow. It is apparent from the
trend of the graph in Figure 4 that the files with high request
probability make their way into the cache towards the be-
ginning of the long experimental run, thereby, generating fast
hits for subsequent requests and commencing a fast converging
trend for the average query latency. At the end of this run, we
observed a 5.52× average speedup per request. The request
hit-rate trend depicted in Figure 5 further corroborates these
findings, as we approach a hit-rate of 100%. Again, we can
observe that most hits occur early due to the skewed request
distribution.

We further analyze the average latency trajectory displayed
by our system in Figure 6. In this graph, we focus only on
the first 3,500 requests (where the most interesting behavior
can be seen). We have also disaggregated the latency to
varying exhibited per file magnitude range. As seen previously
in Figure 3(a), our entire data set of 15,000 files can be
disaggregated into the following four file size magnitudes:
10K, 100K, 1M, and 10M. For instance, the 100K data set
consists of all files ≥ 100KB and < 1MB. Figure 6 shows
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the query latencies observed per disaggregated data set, both
with and without employing the cache. Expectedly, the latency
drop is highest (close to 10× speedup) for the containing files
ranging in magnitude from 1MB to 10MB. The charts per
data set in Figure 6 confirms that our cloud-based web cache
can accelerate applications requiring large data movement for
data-intensive applications. Next, we evaluate the cost and
performance models.

C. Cost-Performance Model Evaluation

The mathematical model presented in Section III calibrates
the overall size of our cache based on user input on cost
constraint C, and the cost-performance tuning parameter λ.
For the performance evaluation presented in the previous sub-
section, we deliberately set λ = 0 to indicate user preference
for the highest performing system. We also did not place any
limiting budget constraint in the previous experiment as the



primary focus of the experiment was to evaluate the fitness
of our system in terms of speed. Hence the optimal cache
configuration, determined by the model, accommodated the
entire load in EC2 node(s). This section is a departure from the
performance-only ethos as we demonstrate the mathematical
model’s behavior when faced with limiting cost constraints
and user preferences.

In this experiment, to garner observable results in a rea-
sonable amount of time, we stipulate the average data size to
be 50MB. Furthermore, we restrict the capacity of a single
node to 500GB allowing our resource allocation algorithm to
indicate a need for scaling up in a short period time. Figure 7
illustrates the cost-performance model’s predilection towards
scaling up amid a constant request rate of 25 per second. The
left vertical axis shows the EC2 nodes allocated, while the
right vertical axis shows the cost per hour incurred. The cost
constraint C = $0.75/hr is shown as a bold horizontal line.
We show the results for λ = 0, 0.25, and 0.5, where λ close
to 0 denotes a user’s desire for higher performance. Note that
in all three cases, we are able to stay under C, while a lower
λ yields slightly more nodes (higher performance by caching
more files).
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Figure 8 highlights the results of a set of experiment with
a constant query rate of 100 requests per second. It is evident
from the graph that the system is decidedly slow to scale up
by allocating a new EC2 node for larger λ values, i.e., placing
more emphasis on savings than performance, commissioning
the overflow data to the slower persistent storage. Note that the
user’s budget is set to $0.75/hour and allocating 5 nodes would
exceed that budget requiring a price tag of $0.8 per hour,
our model never indicates the need for more than 4 nodes,
even in the highest performing mode, as that would violate the
cost constraint. The optimal number of nodes is configured to
4 even though it forces a certain fraction of the data to be
placed in Amazon’s S3 or be evicted out of the cache as the
load increases with time. Furthermore, we observe that the
model’s decision to allocate a new node is deferred until later
with a significant increase in the size of the load as λ value
increases. For λ values 0.25 and 0.5, the highest number of
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Fig. 8. Optimal Node Allocation (Request Rate: 100 requests/sec)

nodes the system will allocate is 3 to achieve the optimal
balance between cost and performance.

These results demonstrate that our elastic cache can success-
fully reconcile cost and performance objectives. Furthermore,
we show that our cache can be easily scaled to accelerate
data-intensive web applications.

V. RELATED WORKS

This section summarizes the related state-of-the-art research
in the area of cloud resource allocation in order to achieve
automated scaling.

Although most cloud providers offer only a cloud manage-
ment API and expect users to implement their own software
stack to manage their compute resources, AWS AutoScal-
ing automates resource provisioning to some degree based
on user defined policies on infrastructure level performance
metrics [16]. Essentially, users specify threshold values for
performance, and whenever the observed performance metric
goes above or below the threshold, a predefined number of
compute nodes are added or removed from the application’s
resource pool. These simple mechanisms work well for easily
parallelizable applications, e.g., Map-Reduce applications [17].
However, in cases where much more distributed coordination
is required, these mechanisms render themselves inadequate
and elasticity does not directly translate to scalability [4]. In
contrast, our system implements a more fine grained scaling
logic. Additionally, our system takes into account a user’s
budget when making scaling decisions.

Mao, et al. presented a dynamic cloud scaling mechanism
which can automatically scale up or scale down the under-
lying cloud infrastructure based on job deadlines [18], [19].
The authors posit that an infrastructure based metric is not
reflective of the quality of service (QoS) a cloud application is
providing or user’s performance expectations. In contrast, our
primary focus is to never violate the budget constraint put in
place by the user. Shen, et al. describe CloudScale, a system to
reduce prediction errors in a prediction-driven elastic resource
scaling for multi-tenant cloud computing infrastructures [20].
The error correction method minimizes the impact of resource



under-estimation errors to minimize SLA violations with low
resource waste.

Closer to our work, Zhu, et al. make a case for scaling
down the caching tier of multi-tiered cloud based web services
for potentially huge cost savings while maintaining a viable
performance to meet the SLA [21]. The authors posit that
although scaling down the caching tier increases cache misses,
with an overall drop in the load, an application can afford to
let more requests into the data tier without SLA violation.
To correctly size the caching tier they propose working back-
wards, i.e., to determine the minimum cache hit-rate needed to
ensure a response time meeting the SLA, and then calculating
the cache size that would provide that hit-rate.

Amazon recently announced their in-memory caching ser-
vice in the cloud, ElastiCache [22]. The service aims at
improving the performance of web applications by allowing
them to retrieve information from the fast in-memory cache
as opposed to slower disk-based databases. Although the users
have the option to scale ElastiCache to tailor it to their require-
ments, it does not scale automatically without explicit user
intervention. Memcached [7], [23], a widely adopted memory
object caching system, is a distributed in-memory cache for
small chunks, up to 1 MB in size, of arbitrary data resulting
from database calls, API calls, web page rendering etc. The
system is designed to speed up dynamic web applications by
alleviating database load. Its simple design enforces an LRU
eviction policy upon reaching capacity.

Our system is fundamentally unique from all of these
available data caching technologies. Our cache can utilize
both memory or disk storage and has the capability to auto
configure the optimal resource requirement based on user’s
preference on cost and performance. It also has the capacity to
automatically scale itself up/down to gracefully accommodate
demand surge/lulls.

VI. CONCLUSION AND FUTURE WORK

While researching load prediction mechanisms befitting our
self-scaling cache, we observed that predicting network traffic
is of significant interest in the network management domain
in order to implement policies regarding congestion control,
admission control, etc. Among the multitude of approaches
that exist for network load prediction, the algorithms that
utilize time series, much like our work, seem worth exploring.
We identify a small body of work that looks promising in the
context of our cache. A prediction algorithm by Zhao et al.
shows promise for predicting short term bursty traffic [24]. The
proposed algorithm takes advantage of multiple time scales in
time series to extract statistical properties of network traffic as
opposed to a single one.

In this paper, we proposed utilizing the IaaS cloud com-
puting paradigm for the purposes of caching web and service
applications while staying within any cost constraints imposed
by the user. We modeled the cost-performance tradeoff for
the resource allocation of such a cache as a bi-objective
optimization problem. Our system evaluation shows that our

resource allocation algorithm allows users to effectively tune
performance requirements while staying within budget.

REFERENCES

[1] M. Armbrust, et al., “Above the clouds: A berkeley view of cloud
computing,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28, Feb 2009.

[2] M. D. de Assuncao, A. di Costanzo, and R. Buyya, “Evaluating the cost-
benefit of using cloud computing to extend the capacity of clusters,” in
Proceedings of HPDC’09. ACM, 2009, pp. 141–150.

[3] P. Marshall, K. Keahey, and T. Freeman, “Elastic site: Using clouds to
elastically extend site resources,” in Proceedings of CCGrid’10, 2010,
pp. 43–52.

[4] D. Chiu, A. Shetty, and G. Agrawal, “Elastic cloud caches for accel-
erating service-oriented computations,” in Proceedings of International
Conference on High Performance Computing, Networking, Storage and
Analysis (SC’10), New Orleans, LA, USA, November 2010, pp. 1–11.

[5] M. Cardosa, et al., “Exploring mapreduce efficiency with highly-
distributed data,” in MapReduce’11. ACM, 2011, pp. 27–34.

[6] T. Bicer, D. Chiu, and G. Agrawal, “Time and cost sensitive data-
intensive computing on hybrid clouds,” in Proceedings of the 2012
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGrid’12), 2012.

[7] B. Fitzpatrick, “Distributed caching with memcached,” Linux J., vol.
2004, August 2004.

[8] “The Rightscale Blog,” http://blog.rightscale.com/2008/04/23/
animoto-facebook-scale-up/.

[9] D. Karger, et al., “Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web,” in
ACM Symposium on Theory of Computing, 1997, pp. 654–663.

[10] R. Bayer and E. McCreight, “Organization and maintenance of large
ordered indices,” in SIGFIDET ’70: Proceedings of the 1970 ACM
SIGFIDET (now SIGMOD) Workshop on Data Description, Access and
Control. New York, NY, USA: ACM, 1970, pp. 107–141.

[11] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The lru-k page replacement
algorithm for database disk buffering,” in Proceedings of SIGMOD’93.
New York, NY, USA: ACM, 1993, pp. 297–306.

[12] “Fast Artificial Neural Network,” http://leenissen.dk/fann/wp/.
[13] R. Frank, N. Davey, and S. Hunt, “Time series prediction and neural

networks,” Journal of Intelligent and Robotic Systems, vol. 31, no. 1,
pp. 91–103, 2001.

[14] P. Barford and M. E. Crovella, “Generating representative Web
workloads for network and server performance evaluation,” in
Proceedings of Performance ’98/SIGMETRICS ’98, Jul. 1998, pp.
151–160. [Online]. Available: http://www.cs.bu.edu/faculty/crovella/
paper-archive/sigm98-surge.ps

[15] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web Caching
and Zipf-like Distributions: Evidence and Implications,” in Proceedings
of Infocom, 1999.

[16] “Amazon Auto Scaling,” http://aws.amazon.com/autoscaling/.
[17] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing

on large clusters,” in OSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation. Berkeley,
CA, USA: USENIX Association, 2004, pp. 10–10.

[18] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with deadline
and budget constraints,” in Proceedings of 11th ACM/IEEE International
Conference on Grid Computing, GRID 2010, Brussels, Belgium, October
2010.

[19] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet ap-
plication deadlines in cloud workflows,” in Proceedings of International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC11, Seattle, WA, USA, November 2011.

[20] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic resource
scaling for multi-tenant cloud systems,” in Proceedings of the 2nd ACM
Symposium on Cloud Computing, SOCC’11, Cascais, Portugal, October
2011.

[21] T. Zhu, A. Gandhi, M. Harchol-Balter, and M. Kozuch, “Saving Cash
by Using Less Cache,” in HotCloud ’12, Boston, MA, June 2012.

[22] “Amazon ElastiCache,” http://aws.amazon.com/elasticache/.
[23] “Memcached,” http://memcached.org/.
[24] W. Zhao and H. Schulzrinne, “Predicting the Upper Bound of Web

Traffic Volume Using a Multiple Time Scale Approach,” in Proceedings
of WWW’03, Budapest Hungary, 2003.


