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Abstract—Renewable energy sources such as wind and solar
are unpredictable for power utilities, which must produce exactly
as much power as is needed at any given time. To help manage
the demand, some utilities have begun deploying real-time energy
prices to their customers. Data centers, which often run Hadoop
jobs on thousands of machines, have become some of the utilities’
largest consumers. In fact, recent studies have shown that, when
processing at full capacity, data centers can require as much
power as a mid-sized U.S. city. By implementing a method in
which data centers can offload their work to locations on different
power grids, they can take advantage of the lower-priced energy
and thereby minimize operational costs. To this end, we have
designed and implemented a new mechanism directly within
the Hadoop 2 codebase that allows users to pause, migrate,
and resume a job at arbitrary points of execution. We have
evaluated this scheme using popular applications and show that
energy can be delayed and shifted to a different location with
reasonable overheads. Our experiments justify the migration use-
case, showing that it saves both energy and time over either
restarting the job remotely or allowing it to complete locally.
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I. INTRODUCTION

Due to its ease of programming and ability to process large
volumes of data, Hadoop, the open-source implementation of
Google’s MapReduce programming model [1], has become
ubiquitous within data center operations. For instance, Amazon
has been offering its popular Elastic MapReduce for a number
of years [2]. Facebook uses Hadoop and its components in
every product they offer [3]. Each day, hundreds of Hadoop
jobs are run on Facebook’s clusters performing tasks such as
generating reports, fighting spam [4], and storing the 500+ TB
of data produced daily by its users [5]. Yahoo!’s Webmap uses
Hadoop to graph all known web pages [6].

As data centers grow in computational capacity, so does
their hunger for power, adding to the costs of operation. Larger
organizations operate data centers at multiple geographical
locations, and each location may require 10s to 100s of
megawatts (MW) of power, enough to sustain a midsized U.S.
city. Furthermore, a recent study reported that data centers
collectively consume up to 2.2% of the world’s energy and is
projected to increase significantly over the next decade [7].

Simultaneously, power engineering advancements have in-
creased the integration of renewable energy on the electrical
grid. This allows grid operatives (e.g., California’s CAISO)
to offer real-time dynamic pricing (RTP) based on current
demand and energy availability [8]. RTP therefore serves as
an incentive for data centers to regulate their power usage.

Consider an organization that operates a set of n geographi-
cally isolated data centers {d1, ..., dn}. We denote Pt(di) as
the RTP at time t at location di. Intuitively, when Pt(di) is
considerably lower than Pt(dj), it would make financial sense
to maximize energy usage at di while powering down dj . This
model is depicted in Figure 1 and is generally accepted in the
current state of research [9], [10], [11], [12], [13].

Fig. 1. Workload Migration for Cost Reduction.

Because Hadoop jobs represent a significant workload at
data centers, and due to their known power inefficiencies [14],
a method that can efficiently migrate jobs between isolated
and geographically distributed sites will allow data centers to
exploit differences in renewable-energy availability. One policy
is to use scheduling decisions: di can could simply kill and/or
delay the execution of a potentially large set of Hadoop jobs
and restart them at a later time t + u : Pt(di) > Pt+u(di).
Another policy is to monitor the RTP prices at all n locations.
Then di can once again kill the execution of its set of jobs,
while starting them at a less costly site dj instantaneously
at time t : Pt(di) > Pt(dj). This approach requires that the
input data are also available at dj , which is not an unreasonable
assumption. For example, replicating data across multiple sites
increases performance and data availability, and is therefore
not uncommon practice [15], [16], [17], [18].

Both approaches, however, suffer from a loss of progress.
In the former approach, the delayed jobs make no progress
toward completion, and worse, the killed jobs lose any progress
they have already made. This could possibly violate service-
level agreements (SLAs) on time-critical applications. The
latter approach of restarting the job at a disparate location
ameliorates the progress issue to an extent. However, any
unfinished Hadoop job at di would still lose their intermediate
state (which may have taken significant time and energy to
compute), and must again be restarted from the beginning at
location dj . This is because Hadoop does not feature pause



and resume operations. The focus in this paper is on providing
these operations natively within the Hadoop framework.

In this paper we describe the design and implementation
of the pause + migrate + resume operations for Hadoop. The
pause operation saves the current state of the job. It captures all
intermediate state that has been generated, i.e., spill files and
key-value pairs in memory. The migrate operation allows the
user to specify a destination for job resumption. Finally, resume
will expand the state-file and resume execution, without losing
any partial results. This operation can be invoked at arbitrary
points in the map, shuffle, or reduce phases. Our experimental
results show that, while job migration incurs an overhead, the
energy savings is significant and offsets this cost.

The remainder of this paper is organized as follows. In
Section II, we present some background on Hadoop’s struc-
tures, objects, and runtime behaviors. We describe our methods
for checkpointing during each phase of a MapReduce job in
Section III. Experimental results are presented in Section IV.
Related works is discussed in Section V, and we conclude and
describe plans for future works in Section VI.

II. BACKGROUND

In this section, we present the background and terminolo-
gies in Hadoop 2.7, which is the current version at the time
of writing [19]. The behavior of a Hadoop job is represented
internally with a set of three state machines: Job, Task, and
TaskAttempt, and all of which are controlled by the application
master.

A. Hadoop State Machines

The Job state machine tracks the state of the singular
job and includes states and transitions for its setup, starting
tasks, killing, failing, and termination. The Task state machine
represents one task that is associated with a job—these are
typically Map Tasks or Reduce Tasks. It should be emphasized
that Map Tasks and Reduce Tasks are not to be confused
with mappers or reducers. Mappers and reducers are the user-
defined classes which “map” and “reduce” key-value pairs.
In contrast, Map Tasks and Reduce Tasks are responsible for
calling the respective user-defined methods on these objects in
addition to many other setup, cleanup, and progress-tracking.

Tasks are also responsible for creating and monitoring
TaskAttempts. A TaskAttempt’s state machine represents a
single attempt at performing a Map or Reduce Task and is
responsible for requesting containers from YARN. A Job that
runs without Task or node failures will typically have one
TaskAttempt associated with each Task. However, if specula-
tive execution is enabled, or if an attempt fails and is restarted,
then a Task may have multiple associated TaskAttempts.

The lifecycle of a Hadoop job begins with the Job object. A
Job begins in its INIT and SETUP states by constructing the
configuration from user parameters, cluster parameters, etc.,
which define the parameters for the job being executed. The
Job also performs some setup, including computing the sizes of
input splits (logical blocks of data). After setup, the Job creates
Tasks and distributes Task-specific configurations to them, e.g.,
input-split paths. Tasks begin in a SCHEDULED state in which
they create a TaskAttempt.

TaskAttempts wait in their UNASSIGNED state until suf-
ficient resources are assigned from YARN, after which it
launches its remote JVM in the allocated YARN container.
After the launch of the remote JVM, both the TaskAttempt
and its associated Task transition into their RUNNING states.
After all TaskAttempts succeed and have disassociated from
their remote containers, their associated Task transitions into
its terminal SUCCEEDED state. Finally, once all Tasks have
completed, the Job handles various cleanup procedures and
eventually transitions into its terminal SUCCEEDED state.

B. Rationale for Native Support

To efficiently utilize hardware, data centers often use
virtualization [20], allowing virtual machines (VM) to coexist
on the same physical hardware. Recent VM research has
made it possible to seamlessly migrate VMs from one host
to another [21], [22], which is an ostensibly natural method to
migrate Hadoop jobs. We approached Hadoop job migration
from the level of Hadoop’s implementation because we believe
that it offers a level of use-case granularity which may not be
possible with VM migration.

Suppose a Hadoop cluster is set up over a collection of
VMs, i.e., HDFS datanodes and YARN node managers are
running within VMs, then there is no guarantee that one user’s
job’s tasks and data will exist on an exclusive subset of a
cluster’s virtual machines. Multiple users’ file blocks in HDFS
are likely to be co-located on any one virtual machine, not only
to satisfy block replication, but also to help with data locality
for running tasks. Additionally, for any running job, YARN is
likely to assign containers on a single VM to multiple users’
jobs simultaneously, again as an effect of Hadoop’s goal to
improve performance through data-locality.

For these reasons, if one were to determine which VMs
were responsible both for storing HDFS block relevant to a
single job, and which VMs were running that job’s containers,
then migrating those VMs would likely migrate irrelevant data
blocks and containers in use by others. Not only would this
extra data impact the performance of a migration, but it would
also break the execution of the other user’s job. Therefore, to
migrate a single job (among many) the entire cluster must be
migrated to preserve correctness.

For this reason, VM migration does not provide the job-
level migration granularity that would be necessary for such
a solution to be adopted in a production setting. Therefore
we approached job migration by extending Hadoop’s source
code. By working at this lower level, we have the granular
access to job-by-job data which allows us to migrate jobs
without affecting the execution of other jobs on a cluster. The
infeasibility of using VM migration to Hadoop jobs was also
observed by Leverich and Kozyrakis [14].

III. CHECKPOINTING IMPLEMENTATION

Our goal in adding the new pause + migrate + resume
operations is two-fold: (1) to introduce minimal disruption to
the core Hadoop source and state machine, (2) to introduce no
runtime overhead (until our operations are invoked), and (3)
from the usage perspective, the new features are transparent



and appear additive, thereby preserving all original function-
alities of Hadoop. In this section, we provide a nuanced
description on the modifications we have made.

We store a Hadoop Job’s state in two parts: First, a di-
rectory is created in the Job-owner’s working directory within
HDFS to store checkpoint data. The files within this directory
will be various representations of intermediate data from the
TaskAttempts running at the time when a pause request is
received. Second, a metadata file is generated, containing paths
to intermediate data files, byte-offsets for input splits, reducer
inputs, etc. This metadata is used to reconstruct and resume
the paused job.

We consider the process by which a Hadoop job’s state
is saved on a Task-by-Task basis. When Hadoop receives a
request to pause a Job, that Job’s application master is notified.
It is the application master’s responsibility to notify the Tasks
of the pause request, as well as to collect and save the metadata
related to each Task’s checkpoint data. Each Task is therefore
responsible for saving its own checkpoint data to HDFS and
reporting its metadata to the application master.

A. State Machine Modifications

To accommodate job-pausing, we created “decorator” ob-
jects that modify the state machines which model the execution
of MapReduce jobs. Two new states (PAUSING and PAUSED)
were added to each of the three existing state machines: Job,
Task, and TaskAttempt. The PAUSING state can be reached
by each machine from the RUNNING state, and is maintained
while each Job, Task, or TaskAttempt is saving checkpoint
data, unless interrupted by an error or kill signal in which
case the machine responsible will transition to KILL_ABORT.
If a machine receives a pause signal while in the SCHEDULED
or INIT states, it simply transitions to the KILL_ABORT state
and is terminated.

Each state machine will transition to its terminal PAUSED
state only after its associated task has ensured that its check-
point data has been properly saved, and metadata has been
collected. The Job state machine is responsible for notifying
each of its associated tasks of the pause request. Shown in
Figure 2, only after a Job has been notified that all containers
have been terminated will it transition from PAUSING to
PAUSED.

Figure 3 shows the modified Task state machine. Each
Task is responsible for notifying only one of its TaskAttempt
of the pause request. Typically the notified TaskAttempt is
the only one associated with that given Task. However, if
a TaskAttempt has previously failed and been restarted, the
most recent running TaskAttempt will be notified of the pause
request. In the case of a Task with speculative execution, the
running TaskAttempt with the most progress will be notified
of the pause request and all other running TaskAttempts will
be killed. Only once a Task’s TaskAttempts have all reached
a terminal state will the Task transition to PAUSED.

Each TaskAttempt and its associated process running in
a remote container are responsible for saving checkpoint
data onto HDFS and delivering checkpoint metadata to the
application master. When both tasks are complete, the remote
container terminates, and the TaskAttempt state machine tran-
sitions into the PAUSED state. This is shown in Figure 4.

B. Checkpointing

A user may invoke a pause request at arbitrary points
of Job execution. We have considered four discrete Hadoop
Job phases, each of which has a different protocol for saving
checkpoints. Map Tasks only have one protocol for saving
checkpoint data, while Reduce Tasks have three protocols, one
protocol for the sort, shuffle, and reduce phases of the task.

INIT SETUP

RUNNING PAUSING

SUCCEEDED

PAUSED

After all
Tasks have
paused

Fig. 2. Job state machine highlighting additional states.

SCHEDULED RUNNING

PAUSINGSUCCEEDED

PAUSED

After all
TaskAttempts have
successfully paused

Fig. 3. Task state machine highlighting additional states.

UNASSIGNED ASSIGNED

RUNNING PAUSING

SUCCEEDED

PAUSED

After state data
has been saved
and metadata has
been reported

Fig. 4. TaskAttempt state machine highlighting additional states.

1) Map Phase: When a Map Task receives a pause request,
it saves two sets of files into HDFS. The first set contain
intermediate “spill files,” which are the intermediate lists of
key-value pairs as generated by the mapper that are spilled
out of the mapper’s in-memory buffer and onto the disk. If any
key-value pair has not been spilled from the in-memory buffer
when the pause request is received, a final spill is completed



before all spill files are transferred into HDFS. The second set
of files stored as part of the map phase checkpoint are spill-
index files, i.e., those which map keys to sectors within the
spill files for quick lookup of key-value pairs during the sort
and shuffle phases. By working at the file level, we ensure that
the map phase’s pause mechanism is compression-agnostic.

Each Map Task reports metadata to the application master.
This metadata comprises (1) an input split byte offset and
length, (2) HDFS paths to the saved spill files, (3) HDFS paths
to the saved spill-index files, and (4) a Task ID. The byte-offset
and length define the region of the input file which the map
task has yet to read. The resumed map task will seek to the byte
offset in its input file and continue mapping until it has read
up to its defined length. The spill paths and index paths are
relative to the checkpoint storage directory and allow Hadoop
to re-acquire the mapper’s intermediate data for restart. When
resuming, the Task ID is used to ensure that spill files can be
correctly associated with the mapper reading the original input
split from which they were generated.

JobName.hdst

Header

32 bits — Input splits seek location
32 bits — Spill files seek location
32 bits — Intermediate segments seek
                 location
32 bits — Reducer segments seek            
             location
/user/file.txt [64 bit offset] [64 bit length]
/user/file.txt [64 bit offset] [64 bit length]
/user/file.txt [64 bit offset] [64 bit length]
/user/file.txt [64 bit offset] [64 bit length]
/user/JobName/attempt_m_1.spill
/user/JobName/attempt_m_1.index
/user/JobName/attempt_m_2.spill
/user/JobName/attempt_m_2.index
/user/JobName/segment_m_1_1.out
/user/JobName/segment_m_1_2.out
/user/JobName/segment_m_1_3.out
/user/JobName/segment_m_2_1.out
/user/JobName/segment_r_1.out
 [64 bit segment seek location]
/user/JobName/segment_r_2.out
 [64 bit segment seek location]
/user/JobName/segment_r_3.out
 [64 bit segment seek location]

Input
splits

Spill
files

Intermediate
Segments

Reducer
input

segments

Fig. 5. An example Hadoop job state metadata file.

The metadata file is split into segments for each type of
checkpoint data associated with each phase of the Job’s lifecy-
cle. The header contains the locations within the metadata file
to which to seek in order to begin reading any given segment.
Some segments (e.g., input splits section for instance) contain
not only file paths, but 64-bit integers associated with those
files which are used during resume to recreate various states.

By storing input-byte offsets on the abstract file level, the
pause and resume mechanisms can be used to migrate Jobs
between clusters with HDFS configured to use different block
sizes. A resumed mapper may be required to operate over
different HDFS block sizes, depending on the relative sizes
of each cluster’s configured block size. In the case where a
mapper would be required to operate over multiple HDFS
blocks (where the block size on the first cluster is significantly
larger than the block size on the second cluster), input splits are
still calculated along block boundaries, which results in what
was one map task when paused becoming multiple map tasks
when resumed. If these conditions are reached, only one map

task is responsible for the spill files saved from the original
map task.

2) Sort Phase: The design of the sort phase mechanism is
a simplified version of the map phase counterpart. When a map
task enters the sort phase and receives a pause signal, the pause
mechanism will wait until all map-spill files have been merged
into one intermediate file and one index file before transferring
both files to HDFS. Because a mapper will have completed by
the time a map task reaches its sort phase, instead of reporting
a byte offset and length for the input file, the task reports that
the entire split’s start offset and length will be excluded from
the Job when it is resumed.

3) Shuffle/Merge Phase: We checkpoint during the shuffle
and merge phases of a Reduce Task using a single protocol.
When a Reduce Task receives a pause request during its shuffle
and merge phase, the task begins blocking all shuffle fetcher
threads, preventing any new intermediate map outputs from
being consumed by the reduce task. These intermediate outputs
are stored either in memory or on disk before being merged
into the final input of the reduce task.

When pausing, the routine is blocked by any in-memory
or on-disk merger threads. Once all fetcher threads have
finished their current fetch task, and in-memory merger and
on-disk merger threads have completed their current merges,
the pause routine continues. All in-memory map task outputs
are converted to on-disk map outputs, while all in-memory
intermediate merge segments are converted to on-disk merge
segments. These segments are then transferred into HDFS.
Before finally terminating, the task reports the metadata to the
application master. First, all file paths to the saved segments
are reported. Second, a task partition identifier is reported in
order to ensure that, during a resume, fetchers continue to fetch
data from the correct partition in the intermediate map outputs.
Third, map task identifiers are reported so that after a resume,
a fetcher will not fetch duplicate data by requesting outputs
from a map task it has already queried, and lastly this task’s
identifier is reported to ensure that all segments make their
way back to the same task following a resume.

During a resume, each data structure used to hold map
output segments or merged segments are recreated from the
saved on-disk segments in HDFS. This leaves the in-memory
segment buffers free to continue accepting more segments, if
any are required.

4) Reduce Phase: The reduce phase checkpoint protocol is
modeled very similarly to the map phase’s. However, unlike
a map task, which takes a single file split as an input, a
reduce task can read from both an in-memory buffer of data
segments and an on-disk collection of inputs to feed the
reducer. The abstract “reducer input” is represented internally
as a priority queue of both types of segments. Priority is
highest for segments whose next unread key-value pair has
a key which is identical to the key of the last-consumed pair.
Priority is lower for those whose next pair has a different key.

While saving a checkpoint, each of these in-memory
segments or on-disk input files are individually treated very
similarly to the input file splits in map tasks. When a reduce
task receives a pause signal, the reducer loop blocks the task
from pausing until it has successfully completed reducing
and outputting the key-value pair on which it was reducing



when the signal was received. Once this condition is met,
the task continues its pause routine. All in-memory segments
are converted to on-disk segments and subsequently saved to
HDFS. The locations of these segments along with this task’s
identifier is reported to the Application Master. Additionally,
the byte locations up to which the reduce task read into each
segment is saved as metadata.

To resume a Reduce Task, each on-disk segment is loaded
into the local filesystem and a seek is performed to the byte
offset location stored in the metadata. These segments are then
fed back into the reducer’s input priority queue and return to
their original order based on the queue’s definition of priority.
Once this is complete the Reduce Task starts the reducer and
the reducer continues from where it left off.

IV. EXPERIMENTAL EVALUATION

In this section we first describe our experimental setup,
the test applications, and the data set used for evaluation. We
remind the reader that a data center’s energy cost is a function
of power consumption, and in practice, a change in current
pricing might invoke migration. The purpose of this evaluation,
however, focuses on the performance and energy impacts of
migration. Affects on costs will be address in future work.

A. Experimental Setup

Our setup consists of two small homogeneous clusters
containing three nodes each. Each node is equipped with
16 GB of RAM, a 3.4 GHz 8-core Intel Xeon processor,
1 TB of local disk storage, and are on the same network.
All machines serve as HDFS datanodes (with a replication
factor of 3) and have a YARN node manager. One node
in each cluster serves as the namenode. The combiner is
enabled to minimize intermediate data and network load. To
collect energy consumption data, each cluster was installed
a Watts up? PRO ES meter. One node in each cluster was
responsible for polling its respective load meter every second
and recording those values to disk for the duration of a test.
To collect network activity data we used Ganglia distributed
system monitor [23].

The applications we used were: (1) inverted index
over the Apache Software Foundation Public Mail Archives
(52.5 GB) [24], retrieved from a public snapshot on AWS.
Shorter jobs, (2) grep and (3) wordcount were also run
over an 11 GB text file containing concatenated copies of the
classic Charles Dickens novel, “A Tale of Two Cities.” We
stored a copy of these data sets into HDFS in both clusters.

B. Results

Figure 6 charts power consumption and network activity
data for our inverted-index program running over our test data
set without any migrations. This job took 1323 seconds to
complete, using 355 kJ of energy. This run serves as the
baseline for comparison.

Next, we evaluate our mechanism by invoking pause and
migration at various points of execution. These points were
selected arbitrarily but within each of these phases: map,
shuffle/sort, and reduce.
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Fig. 6. Power consumption and network activity over the duration of
inverted without migration.

1) Map Phase Migration: Figure 7 shows the power con-
sumption and network activity for inverted index running
in cluster 1 (black line), being paused before completion,
its checkpoint data being migrated to cluster 2 (grey line),
and finally being restarted on our second cluster. The power
consumption is shown in the top plot, while the bottom chart
plots the network activity. The initial job was paused at 27%
map completion and 0% reduce completion.
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Run Pause Migrate Run

Cluster 1 Cluster 2

Fig. 7. Power consumption and network activity over the duration of
inverted migrated between two clusters. The job was paused at 27% map
progress, 0% reduce progress.

As can be seen, the pause interval took 27 seconds,
constituting a 2% overhead over the baseline execution time.
Power consumption and network activity drop significantly
during this period, because all mappers have been stopped
and any unsaved state data is being saved to HDFS. During
this interval, the application master polls running containers
for state metadata and saves this data to HDFS, which can be
seen as short spikes during the pause interval in Figure 7 (top).

Next, the migration step occurs, taking 70 seconds (5.3%
overhead) and is characterized by a large spike in network
activity in both clusters. The small spike in cluster 1’s network
activity is due to the hdfs dfs -get command used to



retrieve the checkpoint data from HDFS. During the actual
copying during migration, cluster 1’s network activity is equal
to that of cluster 2’s network activity because the checkpoint
files (908.7 MB) are being transferred between clusters. After
the copying is complete, and the checkpoint files begin trans-
ferring back into HDFS, cluster 2’s network activity nearly
doubles as a result of HDFS replication.

Finally, for the remainder of the map phase, the network
activity drops due to the mappers working on local input
splits. Toward the end of the map phase (at 700 seconds),
power consumption decreases and a large spike in network
activity can be seen. This is explained by map tasks, which
are resuming on cluster 2. The spike in network activity is the
resuming map tasks taking their designated checkpoint data
from HDFS and rendering that data available to reduce task
data fetchers. Because no checkpoint data was saved for any
reduce tasks, the job resumes normally after 725 seconds.

The migration added 95 seconds to the overall job com-
pletion time, a 7.2% overhead of the baseline job completion
time. If cluster 1 is put into low-power mode after migration,
it uses 87 kJ of energy (24.5% of the baseline).

2) Mixed Phase Migration: Next, we evaluate migration
time when a job is in both the map and reduce phases. Figure 8
charts power consumption and network activity data for a job
paused at 50% map and 17% reduce progress. This test is
characterized by many of the same migration-related features
as the previous test. In comparison with the experiment in
Figure 7, the pause interval exhibits much more network
activity during the pause interval due to a much larger amount
of checkpoint data which must be saved to HDFS, 3.6 GB, but
is very similar otherwise. In this case the migration mechanism
added about 232 seconds to the total job time, an 18% overhead
of the baseline. If cluster 1 is put into low-power mode after
migration, it uses 148 kJ of energy (41.7% of the run).
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Fig. 8. Power consumption and network activity over the duration of
inverted migrated between two clusters. The job was paused at 50% map
progress, 17% reduce progress.

3) Reduce Phase Migration: Finally, we evaluate migration
overheads when a job is in only the reduce phase. Figure 9
shows power consumption and network activity data for a
job paused at 100% map and 83% reduce progress, the

point at which the reducer has reached 50% completion. The
checkpoint data totaled 5.5 GB, the largest so far. This positive
correlation between checkpoint data size and execution time
before pause is expected, because as more input splits are
processed, more intermediate data is produced. However, the
extent of this correlation can vary wildly with the type of job
being run (as we will show later). In total, the time cost of
this migration was 329 seconds, or a 25% increase in baseline
execution time. If cluster 1 is put into low-power mode after
migration, it uses 354 kJ of energy (99% of baseline), marking
the first time that a migration would be less efficient than
allowing the job to finish on cluster 1.

In this experiment, network speed during a migration
and resume created a significant bottleneck. High network
utilization and low power consumption suggest that the rate
at which a migration can be performed is limited by the rate
at which data can be retrieved from and transferred into HDFS.
The drop in network activity during the latter run phase can
be explained by data locality. Due to the replication factor,
3, of HDFS on the test clusters of size 3, the necessary data
required to recreate the data structures which drive the reduce
phase are all local to the reducer, so no block transfers over
the network were necessary.
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Fig. 9. Power consumption and network activity over the duration of
inverted migrated between two clusters. The job was paused at 100%
map progress, 83% reduce progress (50% reducer completion).

4) Short Jobs: The overhead of job migration is much
more apparent for shorter jobs. Figure 10 shows the grep
application running over 11 GB of text, and Figure 11 shows
the wordcount application from the same jar running over
the same text with combiners. The grep task is very much
CPU-bound in comparison to the inverted index program, so
very few network resources are required during the execution
or migration of such a job. There is, however, still the overhead
of waiting for containers to close cleanly, and that overhead
is very apparent during the pause phase in Figure 10. Overall,
this run exhibited 24% overhead during the mixed phase.

The wordcount program, being relatively I/O-bound,
requires more network activity throughout its execution. Some-
what surprisingly, the pause and migration time required for
wordcount was 20 seconds faster than the comparable grep
job, resulting in only 6% overhead. This is likely due to



the pause happening at a serendipitous point in the YARN
container life cycle; the application master may not have
needed to wait very long for running containers to close.
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Fig. 10. Power consumption and network activity over the duration of grep
migrated between two clusters. The job was paused at 54% map progress,
17% reduce progress.
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Fig. 11. Power consumption and network activity over the duration of
wordcount migrated between two clusters. The job was paused at 72%
map progress, 23% reduce progress.

V. RELATED WORKS

Reducing data centers’ energy usage has been at the
forefront of recent systems research, motivating the need for
“greening” data centers [25], [26], [27], [28], [29], [30], [31],
[32]. These efforts consider lowering energy usage unilaterally
at a data center location by integrating on-site renewable
energy resources (e.g., co-locating solar panels and energy
storage systems). More in line with our work is the follow-the-
renewables policy, where workloads are routed among various
green data centers to take advantage of their local renewables.
If the participating data centers are located in different energy
markets, then opportunities for energy-cost reduction can be
exploited. We focus on two major veins of approaches toward
mechanizing the follow-the-renewables policy.

The first approach involves dynamically routing web traffic.
Web traffic is a natural workload to target due to its volume and
intrinsic routing support. For instance, an HTTP/S request can
be rerouted to a different locale given changes committed to
the DNS table. Rao, et al. minimize overall costs by solving for
optimal resource allocation and web-request rates at multiple
data centers [11]. Chen, et al. presented a centralized scheduler
that migrates workloads across data centers in a manner that
minimizes brown energy consumption while ensuring the jobs’
timeliness [33]. Zhang, et al. additionally consider meeting a
budget cap [34]. Other works further consider on-site inter-
mittent renewable energy availability based on location [10],
[35]. Aikema et al. study the feasibility of using data centers
as ancillary services [36]. This class of works is orthogonal,
but complementary, to our own.

A second class under the follow-the-renewables policy
involves the migration of batch jobs. Para-virtualization (e.g.,
Xen [20] and KVM [37]) has enabled M VMs to be condensed
onto a set of N physical servers for some M > N . VM
consolidation not only increases CPU utilization, but the
“empty” physical servers can be powered off or placed on
low-power mode, saving energy costs [38]. VM migration
techniques followed that can copy a running VM instance to a
new physical destination with minimal interruption [21], [22].

Le, et al. propose policies for VM migration across mul-
tiple data centers in reaction to power pricing in a cloud for
high performance applications [39]. Liu, et al. proposed the
GreenCloud architecture, which combines online monitoring
of physical resources with a technique for finding power-saving
VM placements [28]. Beloglazov, et al. present heuristics on
VM placement to optimize power savings [29]. Buchbinder,
et al. propose online solutions for migrating batch jobs to
optimizing costs [40]. In Akoush, et al.’s Free Lunch [41],
the authors argue for either pausing VM executions or mi-
grating VMs between sites based on local and remote energy
availability. In contrast to the above works, our migration
mechanism is implemented directly in Hadoop. Only the
intermediate state must be transferred, avoiding the overhead of
transferring entire VMs. Moreover, we have earlier described
the impracticalities of using VM migration as a tool to transfer
Hadoop jobs across sites.

VI. CONCLUSION AND FUTURE WORKS

In this paper we propose a checkpoint and migration
scheme implemented directly in Hadoop. The checkpoint
includes intermediate data generated, as well as a metadata
file to reconstruct the state for resumption. We evaluated our
approach during all phases of a Hadoop Job. Our results
provide a justification for Hadoop migration. We showed that
both time and energy can be saved by migrating an already-
running job, rather than (1) allowing the job to finish on the
local cluster, or (2) killing the job and restarting it on the
remote cluster. We also showed that there are cases when
migration would not be beneficial, i.e., when the state is
expected to be large and the job is nearly finished. Therefore,
a tradeoff exists and will be exploited in future works.

One future work would be to design a “pipelined” migra-
tion in which intermediate data at the time a job is paused is
migrated, while allowing the job to continue generating new



intermediate data until the first data was successfully migrated.
This would allow some of the time cost of performing a pause
and migration to be hidden during execution of different phases
of a job, minimizing the net cost in job execution time.

In the migration step, performance hits a bottleneck both
when geting state data from HDFS then storing it locally, and
when puting state data into HDFS. This may also be an issue
if the local volume used to migrate state data is not of sufficient
size to fully contain that data (in which case the data must be
retrieved and migrated in iterations). Developing a method in
which files can be transferred between HDFS volumes without
the need to use an intermediate local volume would improve
the performance of state-data migration.
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