
A Tunable Compression Framework for
Bitmap Indices

Gheorghi Guzun #1 Guadalupe Canahuate #2 David Chiu ∗3 and Jason Sawin †4

Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, USA
1 gheorghi-guzun@uiowa.edu.edu, 2 guadalupe-canahuate@uiowa.edu

∗ Engineering and Computer Science, Washington State University, Vancouver, WA, USA
3 david.chiu@wsu.edu

† Computer and Information Sciences, University of St. Thomas, St. Paul, MN, USA
4 jason.sawin@stthomas.edu

Abstract—Bitmap indices are widely used for large read-only
repositories in data warehouses and scientific databases. Their
binary representation allows for the use of bitwise operations
and specialized run-length compression techniques. Due to a
trade-off between compression and query efficiency, bitmap
compression schemes are aligned using a fixed encoding length
size (typically the word length) to avoid explicit decompression
during query time. In general, smaller encoding lengths provide
better compression, but require more decoding during query
execution. However, when the difference in size is considerable, it
is possible for smaller encodings to also provide better execution
time. We posit that a tailored encoding length for each bit vector
will provide better performance than a one-size-fits-all approach.

We present a framework that optimizes compression and query
efficiency by allowing bitmaps to be compressed using variable
encoding lengths while still maintaining alignment to avoid
explicit decompression. Efficient algorithms are introduced to
process queries over bitmaps compressed using different encoding
lengths. An input parameter controls the aggressiveness of the
compression providing the user with the ability to tune the trade-
off between space and query time. Our empirical study shows
this approach achieves significant improvements in terms of both
query time and compression ratio for synthetic and real data
sets. Compared to 32-bit WAH, VAL-WAH produces up to 1.8×
smaller bitmaps and achieves query times that are 30% faster.

I. INTRODUCTION

From business analytics to scientific simulations, today’s
applications are increasingly data-driven, and their associated
data stores are growing rapidly in density. To support efficient
queries over such Big Data, appropriate indexing mechanisms
must be precomputed. One popular indexing technique for
enabling fast query execution over large scale read-only data
sets is the bitmap index [1], [2]. Because bitmaps can leverage
fast bitwise operations supported by hardware, they have been
extensively used for selection and aggregation queries in data
warehouses [3], [4] and scientific applications [5], [6], [7], [8].

In a simple bitmap, each row corresponds to a tuple, and a
column (bit vector) corresponds to an attribute value-range (or
a bin). Bit positions are set only for tuples that satisfy the bit
vector property. For categorical attributes, one bit vector can
be created for each attribute value. Continuous attributes can

be discretized into a set of bins and a bit vector is generated for
each bin. For example, consider a relation containing objects
in a spatial grid. Suppose there are three attributes: object
type and the X,Y coordinates in which the object resides.
The attribute, type, is a categorical attribute and thus one bit
vector is created for each object type. Attributes X and Y are
continuous, so the desired resolution for the grid defines the
number of bins needed to properly represent each grid cell.

A query requesting objects located within a grid cell can
be answered by applying an AND between the corresponding
bit vectors. Any set bit in the resulting vector indicates an
object located within the cell. If the number of objects is fixed,
increasing the resolution of the grid in the running example
will increase the number of bit vectors, producing a larger
index, but it will also increase the bit vectors’ sparsity. For
this reason, it is worthwhile to compress bitmap indices.

Modern bitmap compression techniques minimize the de-
coding overhead during query time by allowing operations to
be applied directly over the compressed bitmaps. Most of these
techniques are variants of the popular Word-Aligned Hybrid
(WAH) encoding [9], [10]. To ensure memory-alignment on
w = 32 or 64-word architectures, WAH splits the bit vector
into a sequence of (w − 1) bit segments, which become
the unit of compression. A (w − 1)-bit segment containing
heterogeneous values is encoded into a literal as follows. For
a w-bit word, the most significant bit is flagged 0, and the
remaining (w − 1) bits are copied over verbatim. Conversely,
a sequence of r consecutive w − 1 bit segments containing
homogeneous bit values can be encoded into a fill. The most
significant bit is flagged 1 to denote a run of segments, the next
bit denotes the value of the run, and the remaining (w − 2)
bits are used to represent the run-length of segments, r.

Using this encoding, a maximum run of 2w−2 × (w − 1)
bits can be represented by a single WAH fill word. However,
in practice the longest runs only require several bits to be
encoded. It is this overhead in representing the fills that
have motivated several new techniques. Recent efforts can be
classified into two separate tracks: (1) enhanced variants of
WAH , and (2) arbitrary unit segment lengths for compression.
While these variants share basic encoding and processing

similarities, their differences optimize various scenarios. For
instance, Concise [11] and PLWAH [12] seek to improve
compression ratio when a single bit interrupts a long run, while
VLC [13] proposed the use of arbitrary segment lengths to
improve compression but increased query execution time due
to the decoding cost overhead.

We believe that a unified bitmap compression and execution
framework, which can negotiate the aforementioned trade-offs,
would be beneficial to the Big Data community. In this paper,
we propose a novel aligned variable segment-length com-
pression framework to achieve better compression and query
execution times. Within our framework, we allow various
word-aligned compression techniques to coexist and operations
between bitmap vectors compressed with different methods
is performed on-the-fly circumventing explicit decompression
overheads. Given the data set and several input parameters
from the user, our framework characterizes the data to inform
on an appropriate segment length and encoding scheme. The
scheme can be chosen under the conditions it performs best
and combined to achieve improved storage and query time.

This paper makes the following contributions:
• A novel generalized and extendible framework for

bitmap indices called Variable Aligned Length (VAL)
is designed to compress bit vectors using different
encoding methods and variable segment lengths while
maintaining the alignment of the encoding unit segment
length.

• As proof-of-concept, we have implemented WAH within
the VAL context (referred to as VAL-WAH). New,
efficient algorithms operate WAH compressed bitmaps
encoded using different segment lengths.

• This compression framework has been parametrized with
an input tuning parameter λ that allows users to trade-
off between space and querying time. Our VAL-WAH is
more efficient than 64-bit WAH in compression (up to
3.4× smaller) with comparable query time performance
(only 3% overhead). Compared to 32-bit WAH, VAL-
WAH produces up to 1.8× smaller bitmaps and achieves
query times that are 30% faster.

• An extensive analysis of VAL-WAH has been performed
on real and synthetic data sets with different data dis-
tributions (uniform and zipf). Space-time comparisons
are performed against bitmaps compressed using sev-
eral well-known encoding. Among popular schemes,
we show that our compressed index is up to 50×
smaller than 64-bit EWAH and up to 40% faster than
32-bit PLWAH. Using harmonic mean, we combine
compression ratio and query time ratio into a single
metric, gain. Experiments over both sorted and non-
sorted data show that VAL-WAH produces a positive
net gain when compared to other methods. Furthermore,
the gain increases with bin cardinality when compared
to fixed-length WAH.

The remainder of this paper is structured as follows. In
Section II, we present background and related work on bitmap
compression schemes. Section III describes the proposed
Variable Aligned-Length framework in depth, detailing both
compression and query processing algorithms. Section IV

details a proof-of-concept integration of our framework with
the popular encoding scheme, WAH. In Section V, we present
our experimental results for both sorted and non-sorted data.
Finally, we conclude and discuss future research directions in
Section VI.

II. RELATED WORKS

Bitmap indices are typically compressed using specialized
run-length encoding schemes that allow queries to be exe-
cuted without requiring explicit decompression. Byte-aligned
Bitmap Code (BBC) [14] was one of the first compression
techniques for bitmap indices operating with byte-blocks for
alignment purposes. BBC compresses the bitmaps compactly
and query processing is CPU-intensive. Word Aligned Hybrid
(WAH) [15] proposes the use of words instead of bytes to
match the computer architecture and reduce read latency. In
practice, WAH uses roughly 60% more space than BBC and
can execute logical operations 12× faster.

Recently, several encodings optimizing WAH have been
proposed in the literature [9], [12], [6], [11], [13], [16].
Enhanced WAH (EWAH), also seen in literature as Word-
aligned Bitmap Code [9], focuses on improving query time by
trading-off space. EWAH uses half of a word to encode fills.
The upper half (most significant bits) of the fill word encodes
the flag bit, the fill value, and the run-length. The remaining
bits are used to represent the number of literal words following
the run encoded in the fill. Query speedup is achieved because
literal words can be skipped when operating with large fills.
For example, literal values can be ignored when an AND is
applied with a fill of 0s. However, since only half of the word
is used to encode the fills, a bitmap with long runs may not
be compressed as efficiently.

PLWAH [12] and Concise [11] improve compression in
the cases where a single dirty bit interrupts a long run.
Within a fill word, dlog2 we bits are reserved to indicate the
position of the fill’s complement bit. For Concise, this near-
fill segment is the literal word before the fill and for PLWAH
is the literal word after the fill. In the best case, a bitmap
compressed using PLWAH/Concise can be half the size of
a WAH compressed bitmap. An extension to PLWAH [17]
enables “polluted blocks” to appear multiple times in a fill
block by introducing a new word type called draggled fill.

To handle high rates of append operations, Compax [6]
introduced two new types of words in addition to WAH’s
literal and fill: fill-literal-fill (FLF) and literal-fill-literal (LFL).
These new words encode short runs (run lengths that can be
encoded in a byte) and literal words that differ from the fill
by a single byte and appear in the patterns FLF or LFL. In
these cases, Compax is able to compress three WAH words
into a single 32-bit word: three bytes are used to encode the
original WAH words and the remaining byte indicates the type
of word and the byte position in the original WAH word of the
literal byte(s). In their evaluation, Compax was able to encode
bitmaps using 60% less space than WAH. Although Compax
was designed for 32-bits words, it is possible to extend it to
variable sizes (16 and 64-bit words) by adjusting the number
of bits to index the byte in the literal words and therefore it
could be included in the proposed framework as well.

Legal
Segments (LS)

Bitmap
Characterization

Encoding
Selector

Segment Length
Selector Compress

VAL Encoder VAL Query Engine

Disk

Query Processor

Fetch,
Decode

word size (w),
alignment factor (b)

tuning
(lambda)

Queries
Results

Data Set

WAH PLWAH EWAH

Compressed Bitmap

...

Fig. 1. The VAL System Framework: Encoder and Query Engine

Because tuples can be ordered arbitrarily in relations, re-
ordering has been applied to maximize runs [18], [19], [20],
[21], [22]. Finding an optimal order, however, has been shown
to be NP-Complete [23], and different heuristics have been
proposed, such as lexicographic order, Gray codes [19], and
Hamming-distance-based [24], among others. Reordering pro-
duces longer runs for the first few bit vectors, but generally
deteriorate into shorter runs (and worse, random noise) in
the higher dimensions. Such a pattern means that WAH can
achieve optimal compression for the first few columns, but
the compression reduces for the later columns. This is the
motivation for allowing varying segment lengths for each bit
vector.

Previous efforts have also recognized the advantages in
using variable segment lengths for encoding. In VLC [13],
arbitrary segment lengths can be used to encode each bit vector.
Performance in query execution degrades drastically when seg-
ment lengths are not aligned. Partitioned WAH (PWAH) [16]
proposes to encode the bitmaps using several partitions within
a 64-bit word. PWAH-8 for example, divides a word into
8 partitions and stores fills and literals using 7 bits. PWAH
maintains a header in each word for all flag bits, enabling
“extended fills”, using shorter block lengths to represent longer
runs. However, PWAH does not propose to execute queries
involving bitmaps compressed using variable partition lengths.
Since the partitions use unaligned segment lengths of 7, 15,
or 31, queries involving bitmaps compressed with different
encoding lengths will require explicit decompression.

As expected, the use of these techniques is application
and data-dependent. We have designed a unified compression
framework where these techniques can coexist and are used for
the cases where they can improve performance the most. We
developed efficient query processing algorithms over bitmaps
compressed using different segment lengths, while maintaining
the alignment of the segments. We have designed encoding
and query processing interfaces that allow the integration of
various aligned run-length compression techniques. To inform
the selection of the method/segment-length encoding to be
used for a particular bitmap vector, we introduce a λ parameter
that captures the trade-off between compression and decoding
time during query execution.

III. VARIABLE ALIGNED LENGTH (VAL) FRAMEWORK

Most modern bitmap compression techniques are variants
of the Word-Aligned Hybrid (WAH) encoding, which uses
w-bit words to align with the underlying CPU architecture,
e.g., w = 32 or w = 64. While the word size w is fixed
on physical constraints, there is no such requirement that the
segment length s, i.e., the unit of compression, must be fixed
at s = w − 1. Indeed, WAH-style fills and literals can easily
be represented in s = 7 bit segments, which is packed into the
physical unit of bytes rather than words[12].

The selection of the compression method, and indepen-
dently, the segment length s, are both data and application-
dependent. It is observable that there exists clear scenarios
in which one method outperforms the others in time and/or
space. We have identified two orthogonal aspects that can be
generalized: (1) the encoding segment length s and (2) the
encoding method used for compression. We propose a uni-
fied bitmap compression framework, Variable Aligned Length
(VAL), where these variations can coexist. Our framework
inputs user preference on the space-time trade-off, and auto-
matically applies the optimal settings to improve performance.

The proposed VAL system framework is shown in Figure
1, comprising two main components: VAL Encoder and VAL
Query Engine. The user inputs the data and a set of system-
specific parameters. The input data set is first characterized,
e.g., by profiling the overall bit distribution and length of
runs. This information is sent to the Encoding Selector and the
Segment Length Selector. The former selector chooses an ap-
propriate compression encoding scheme, and the latter decides
on a segment length s to be used for encoding each bit vector.
After compression, the compressed index is read by the VAL
Query Engine which handles queries over the data set. Queries
can be executed over data compressed with different encoding
techniques or segment lengths. An important contribution of
this paper is the design of querying algorithms that can operate
two bit vectors encoded with different segment lengths. These
algorithms as well as the performance of the VAL Encoder are
evaluated in Section V.

A. Bitmap Encoding Commonalities
To show the commonalities and generalizability of modern

WAH-variant schemes, let us focus on the encodings for sev-

0…0 000000001000000 0…0 100010010100000 0…0

(a) Verbatim Bitmap B (2,445 bits)

(b) WAH Compressed Bitmap B (s=15) (128 bits)

(c) PLWAH Compressed Bitmap B (s=15) (112 bits)

(e) VAL-WAH Compressed Bitmap B (s=15) (128 bits)

1010 000000000111101 000000001000000 000000001011111 100010010100000 0001 100010010100000 000000000000010

1000000000111101 0000000001000000 1000000001011111 0100010010100000 1000000000000010

1001110000111101 100000001011111 0100010010100000 1000000000000010

001111010000001 000000001000000 010111110000100 100010010100000 000000100000000

(d) EWAH Compressed Bitmap B (s=15) (120 bits)

61 x 15 95 x 15 4 x 15 2 x 15

4 x 16

4 x 16

4 x 15

3 x 15

Fig. 2. Examples of Various Word Aligned Encodings

eral techniques: Word-Aligned Hybrid (WAH) [15], Enhanced
WAH (EWAH) [9], and Position-List WAH (PLWAH) [12].
Figure 2 (a) shows a verbatim, uncompressed, bitmap B that
will be used to drive our examples. It contains 2, 445 bits
divided into a 61 × 15-bit run of zeros, followed by 15 clear
bits with a single set bit in position 7, then another 95 × 15-
bit run of zeros, 4 × 15 bits of mixed zeros and ones, and
finally, a run of 30 zeros. This example uses a w = 64 bit
architecture and a segment length of s = 15, which means
that each consecutive 15-bit segment in B will be considered
at a time as units of compression.

Recall that the standard version of WAH is aligned to the
machine’s word size w, and thus uses a segment length of
s = w− 1. Figure 2 (b), shows a WAH-encoded bitmap using
a s = 15 segment length. Instead of a word, we assume
a more generalized block of size w′ = 16 bits. Note that
in this scenario, four w′ = 16-bit blocks can be physically
encapsulated into a w = 64 bit word. For each w′-bit block,
the most significant bit (shown in bold) is the flag bit, e.g.,
1 for fills and 0 for literals. If a w′-bit block is a fill, the
second most significant bit (underlined) denotes the fill bit.
The remaining 14 bits in the fill block are then used to encode
the run of consecutive of fill segments in the verbatim bitmap
(61 for the first fill block). This is followed by a literal block,
which stores the 15-bit literal segment with the 7th bit set to
1, and so on.

The next example we show is PLWAH, in Figure 2 (c).
PLWAH’s defining property lies in its ability to encode fills
even with the presence of a single dirty bit, which would
disrupt a run. Note that again, we are assuming s = 15, which
imposes a w′ = 16 block size. Notice that the single dirty
bit (in the 7th position) in verbatim bit vector pollutes an
otherwise longer run of 0s. Instead of encoding this dirty block
as a literal, PLWAH uses the four position bits shown in italic
to denote the position of the dirty bit, i.e., (7)10 = (0111)2. If
the position bits for a fill block are zeros, then no literal word is
integrated. This determination requires some decode overhead
when processing queries. PLWAH uses p = dlog2 se bits to
index the dirty bit position, and therefore the maximum run-
length that can be encoded with a single fill block is 2s−p−1×s.

Longer fills will require two fill words to be encoded.
Figure 2d) shows the EWAH encoding for bit vector B.

For fill blocks, p = b s2c bits (in italics) are used to indicate
the number of literal blocks following the fill. The maximum
run-length that can be encoded with a single fill word is
thus (2

s
2−1s). For this reason, EWAH typically does not

compress as well as the other methods. However, its improved
performance during query time is significant because literal
words can be skipped or appended without decoding when
operated with a fill.

Finally, Figure 2e) shows the bitmap B encoded using
WAH within the VAL framework (VAL-WAH). VAL packs the
segments into a word using w′-bit blocks and creates a word
header (in bold) that stores the flag bits, one per block within
each word. By placing this header in the front, we can reduce
the decoding overhead. The compression performance of VAL-
WAH is the same as WAH for the same s. The compression
improvements achieved by VAL come from the use of smaller
segments which in general, will produce better compression
than longer ones. The exception is the case where the bits
used to represent a fill are not enough to represent long runs
in a single block. For comparison purposes, the bitmap B from
the example would require 320 bits after compression using
WAH-64 (s = 63). For this example, WAH-64 would require
2.5× more storage than VAL-WAH.

B. Bitmap Processing Commonalities

The similarities in encoding schemes also imply common-
alities in query execution. Let us consider the WAH query
processing algorithm and how it compares with other methods.
Without loss of generality, the discussion that follows considers
a query executed as the AND of two compressed bit vectors.
An AND operation is performed by iterating over the words in
the two bit vectors. For each WAH encoded word, the flag bit
is read, and decoded into an activeWord. An activeWord is a
structure that identifies the type of word (fill or literal). If the
activeWord is a fill, then it also holds the fill bit value and the
number of segments in the run. Two activeWords from each
bit vector are queried together, until the number of segments

is exhausted. At this point, the next word is read from the
cache and decoded. An activeWord can be interpreted as the
following structure,

typedef struct {
/* holds encoded word value */
word_t val;
/* fill-specific vars */
bool fillBit
int runLength;

} activeWord;

where sizeof(word_t) is equal to the machine’s word size.
The encoded value of the word is stored in val, and to
determine whether an activeWord is a fill or literal is done
by simply examining val’s most significant bit. Clearly, the
values of fillBit and runLength are only assigned if the
activeWord is determined to be a fill.

There are three cases when executing the AND between the
two activeWords, X and Y. (Case 1) If X and Y are both fills, the
result is a new fill word with its fillBit equal to the result of
X.fillBit & Y.fillBit. The new fill word’s runLength
is assigned abs(X.runLength-Y.runLength). (Case 2) If X
and Y are both literals, then the result is a new literal word with
val set to X.val & Y.val. (Case 3) Finally, if X is a literal
and Y is a fill, then the number of segments in the fill word
is first decremented by one: Y.runLength--. Afterwards, the
result is a new literal word with val being set to the & result
between X.val and the literal value of Y.fillBit. Bit vectors
are never explicitly decoded one bit at a time. Considering each
bit as a processing unit, operations of type (Case 1) observe a
superlinear speedup, while operations of type (Case 2 and Case
3) observe an s× speedup, where s is the encoded segment
length.

Due to the shared encoding similarities of the WAH variants,
we observe that WAH’s core processing algorithm can also
be easily extended to process PLWAH, Concise, Compax, or
EWAH with minor modifications. For PLWAH and Concise,
decoding of the activeWord word could produce one fill and
one literal when the position bits for the fill are not all zeros.
This literal is the word either following or preceding the fill,
respectively for PLWAH and Concise. The logic for query
processing remains similar; the difference is to operate both
the dirty literal and the fill before decoding the next word.

To query using Compax, there will be more branch opera-
tions, because it uses four types of words. For fill words, more
decoding is required to decide whether the fill is of the form
Fill-Literal-Fill (FLF) or Literal-Fill-Literal (LFL). In those
cases, three active words will be created but the query pro-
cessing logic still remains the same. The branching overhead
is the trade-off for Compax’s update friendly structure.

Because EWAH applies a different encoding for the fills, it
does not generate multiple activeWords after decoding. It only
stores the number of literal words following the fill, and this
information is used for query optimization. When two fills are
ANDed together and one of them is a zero fill, literal words
can be skipped without decoding by incrementing the position
of the vector iterator. Also, literals can be ANDed until the
counter reaches zero without requiring any decoding. These
translate into faster query execution. Nevertheless, the logic for

operating literals and fill values remains relatively unchanged.

C. The Val Encoder
To generalize query processing over variable segment

lengths, we introduce a more general activeBlock in lieu of
an activeWord. An activeBlock shares the basic structure of
an activeWord, except that the activeBlock.val considers
sequences of s (s ≤ w) bits. When s = w, there is one
block per word, and the structures and query processing reduce
back to the original algorithm. However, for encodings using
smaller segment lengths s < w, decoding of a physical word,
would produce two or more activeBlocks. For example, when
w = 64, s = 15, there would be four activeBlocks per
physical word.

The goal of our framework is to improve compression
without adversely affecting query performance. For this reason,
the segment lengths s cannot be arbitrary, as we would lose the
alignment benefits. Queries would suffer from considerable de-
coding overhead during query execution. Given the machine’s
word size w and an alignment factor b, b ≤ w, we define the
set of Legal Segment Lengths LS as,

LS = {2i × (b− 1) | 0 ≤ i ≤ (log2 w − log2 b)} (1)

On a 64-bit architecture (w = 64) and alignment factor
b = 16, the legal segment lengths are, LS = {15, 30, 60}.
This definition of segment lengths ensures that larger segment
lengths are always multiple of smaller segment lengths, and
therefore the activeBlocks they create are always logically
aligned. To further reduce the overhead of query execution,
the segments are also memory-aligned, i.e., segments never
cross over two physical words. For instance, segment lengths
s = 15, 30, and 60 encapsulate four, two, and one block(s)
into a single physical word, respectively. When needed, blocks
are padded with zeros within the physical word. For example,
recall that each block is encoded using s+1 bits (the one extra
bit is needed to flag the block as being either a literal or a fill).

 … Flag Bits Block 1 Block 2 Block N

s bits s bits s bits

w – bit Word

w/b bits

Fig. 3. Word Encapsulation

This word encapsulation scheme is shown in Figure 3. The
number of blocks encapsulated into a word is given by N =
(b−1)×w
b×s . The flag bit for each block is stored in the w

b -bit word
header. The goal of the word header is to minimize the time
required to align the segments between two bitmaps encoded
using different block sizes. For example, two literal blocks
with a VAL bitmap encoded using s = 15 can be directly
operated with the corresponding literal block encoded using
s = 30. It is worth noting that small alignment factors would
have a significant number of unused bits for larger segments

in LS. For example, for b = 8 and w = 64, the legal segment
length s = 56 would have 7 unused bits per word. However, it
is worth noting that in many cases the increase in compression
for the bit vectors encoded with smaller segment lengths will
make up for these pad bits in the bit vectors encoded with
larger segment lengths.

Let us consider again the system framework presented in
Figure 1. Along with the data set, the user also inputs the
machine’s word size w, the alignment factor b, and a tuning
parameter λ (explained later). First, w and b are input into
Equation 1 to determine the set of legal segment lengths, LS.
Next, encoding a bitmap involves two major decisions: (1)
the encoding method to use, and (2) the segment length s ∈
LS. To inform on these decisions, the Bitmap Characterization
component passes over and profiles each bit vector from the
input data. This profile is used as input into both the Encoding
Selector and the Segment Length Selector.

The Encoding Selector determines an encoding for a bit
vector given its profile. For example, if the bit vector is
very sparse, then PLWAH may be selected. EWAH may be
preferred for noisy bitmaps that have a majority of literals
and short fills. The Segment Length Selector uses the profile
and LS to identify an appropriate s ∈ LS to compress
each bit vector. In general, bitmaps compressed using smaller
segments will compress more aggressively, but may require
more decoding and bookkeeping operations when executing
queries. To exploit this trade-off, we allow users to input a
tuning parameter λ, 0 ≤ λ ≤ 1. As λ approaches 0, the
system will attempt to achieve the best compression possible,
while a λ approaching 1 prioritizes faster query execution time.

Given a bit vector B and λ, the Segment Length Selector
will return

s =

{
sc+i, if size(B,sc)·(1+λ)1+i+λ

i+1 ≥ size(B, sc+i)
sc, otherwise

(2)

where size(B, s) is the size of the bit vector B when com-
pressed with segment length s. The term,

sc = argmin
si∈LS

{size(B, si)} (3)

refers to the segment length that yields the most compressed
bit vector. Similarly, sc+i denotes the ith legal segment length
greater than sc in LS.

After these parameters are selected, B is compressed. A
header byte must be appended to the beginning of each
compressed bit vector. The most significant four bits in the
header are used to identify the multiplier m for the alignment
factor b, such that (m×b) ∈ LS is the selected segment length.
The remaining four bits encodes the method used, e.g., WAH
or PLWAH.

D. The VAL Query Engine
Enabling variable segment lengths complicates query pro-

cessing. As discussed previously, queries are executed by
performing logical bitwise operations between bit vectors. In
general, the more compressed blocks are contained in the bit
vector, the longer it takes to execute the query as compressed

blocks need to be decoded. Using variable segment lengths
can increase decoding costs. However, in the cases where both
bitmaps are compressed well, there are opportunities for faster
query execution by processing whole compressed blocks.

In our framework, two VAL bit vectors Xm×s and Ys
encoded using segment lengths m× s and s, respectively are
operated together to produce bit vector Zs, which stores the
result of the bitwise logical operation Xm×s ◦Ys, where ◦ is a
binary logical operator. Algorithm 1 shows the pseudocode for
query processing. Each bitmap is still decoded one physical
word (currentWord) at a time (Line 1-7). The parameter m
(Line 3) indicates that the currentWord should be decoded
into blocks of segment length m × s. The decoded current-
Word contains a number of activeBlocks. This activeBlock is
tantamount to the activeWord structure used in WAH. The
currentWords are iterated one block at a time (Lines 8-14)
and are operated together until exhausted. Two fill blocks can
be operated without explicit decompression (Lines 15-20). If
one of the activeBlocks is a literal, then the values are operated
together and the number of segments in the fill, nSegments, is
decremented by 1 with each getLitValue() call (Lines 21-23).

Algorithm 1: General Bitwise Logical Operation
Input: Bit Vector X , Y : (X .segLen=m× s and Y .segLen=s)
Output: Bit Vector Z: The resulting compressed bit vector after

performing the logical operation X ◦ Y
1 while X and Y are not exhausted do
2 if X .currentWord is exhausted and there are more words in X then
3 X .decodeNextWord(m);
4 end
5 if Y .currentWord is exhausted and there are more words in Y then
6 Y .decodeNextWord(1);
7 end
8 while X .currentWord and Y .currentWord are not exausted do
9 if X .activeBlock.nSegments = 0 then

10 X .activeBlock = X .nextBlock();
11 end
12 if Y .activeBlock.nSegments == 0 then
13 Y .activeBlock = Y .nextBlock();
14 end
15 if X .activeBlock.isFill() and Y .activeBlock.isFill() then
16 nSegments = min(X .activeBlock.nSegments,
17 Y .activeBlock.nSegments);
18 Z.addFill(X .activeBlock.fill
19 ◦ Y .activeBlock.fill, nSegments);
20 X .activeBlock.nSegments -= nSegments;
21 Y .activeBlock.nSegments -= nSegments;
22 end
23 else
24 Z.addLiteral(X .activeBlock.getLitValue()
25 ◦ Y .activeBlock.getLitValue());
26 end
27 end
28 end
29 return Z;

Note the similarities between Algorithm 1 and the WAH
processing algorithm described in Section III-A. The encoding-
specific details are enabled through implementing the abstract
method decodeNextBlock(). As a proof-of-concept, we imple-
mented WAH within our generalized framework and optimized
query execution over variable segment lengths.

IV. VAL IMPLEMENTATION OF WAH (VAL-WAH)
In VAL-WAH, each block in a word corresponds to a WAH

fill or literal segment. As discussed previously, the flag bits
for all blocks in the word are placed in the word header. The
number of blocks in a word depends on the segment length
used for encoding. Query execution for VAL-WAH follows
the generic logical operation presented in Algorithm 1. The
specialization for WAH consists in the implementation of the
decodeNextWord() method. Since several encoding segment
lengths could be used, a complication during query processing
is to execute queries involving bitmaps encoded using different
segment lengths. This is done by parametrizing the decode
method with an integer p that acts as a segment-length con-
version factor. The segment length used for decoding is 2p×s,
where s is the segment length used for encoding. The possible
values of p depend on the legal segments for encoding. For our
current setup that allows segment lengths of 15, 30 and 60, p
is in the interval [−2, 2]. There are three cases: p < 0, p = 0,
and p > 0, which decode the current word into blocks using a
smaller segment length, the same segment length, or a larger
segment length than it was used for encoding. Specifically,
p = 0 is used to decode segments with the same segment
length as the encoding, |p| = 1 is used to convert segment
lengths between 15-30 and 30-60, while |p| = 2 is used to
convert between 15-60.

A. Converting Segment Lengths
In this section, we show how conversion between different

segment lengths is performed efficiently. During query exe-
cution, this conversion is performed on-the-fly as the query
is processed. The bitmaps are not re-encoded to a differ-
ent segment length explicitly. As mentioned before, segment
lengths in LS can be easily aligned during query execution
since, larger lengths are always multiple of smaller ones. The
conversion factor between different segment lengths can be
expressed as m = 2|p|.

Given a VAL-compressed bit vector Xs encoded using
segment length s, we can easily convert Xs into Xs/m in the
following way. Consider the conversion using p = 1,m = 2
of X30 down to X15. A literal block in X30 will translate
into two literal blocks in X15. Similarly, a fill block in X30

with segment count nSegments will translate into a single
block in X15, with same fill bit and segment count equal to
nSegments × m. Note that multiplications/divisions can be
done using shift-operations because m is a power of 2. The
sign of p indicates whether we convert up (p < 0) to a larger or
convert down (p > 0) to a smaller segment, and thus defining
the direction of the shift operation.

Translating from smaller segments to larger ones is possible.
For example p = −1,m = 2 would translate X30 into X60.
Two literal blocks in X30 will translate into one literal block
in X60. A fill block in X30 with segment count nSegments
will translate into one fill block in X60 with segment count
equal to nSegments×m. When the division has a remainder,
a literal segment is generated with a literal representation of
the fill value for m-fraction of the word, and the rest of this
decoded literal is completed using the next word in the vector.

Algorithm 2 shows the pseudocode to decode a word from
a bit vector Xs encoded using segment length s and produces
the decoded activeBlocks using segment length m/s. There
are two key data structures in this algorithm: activeWord and
activeBlock. The activeWord is an array containing the new
decoded blocks, i.e., an activeBlock.

Algorithm 2: A Method for Decoding Down (p > 0).
Input: Compressed word containing blocks of length s; N : the number

of blocks in the word; possible values 1,2, m = 2|p|: factor of
the new segment length

Output: activeWord - VAL word containing decoded blocks using
segments of length s/m

1 for i = 1→ N do
2 activeBlock = ith block;
3 if activeBlock.isLiteral() then
4 for j = 1→ m do
5 activeWord.addLiteral(activeBlock.value >>>
6 s× (N − i));
7 end
8 end
9 else

10 activeWord.addFill(activeBlock.value >>> (s− 1),
11 activeBlock.nSegments ×m);
12 end
13 end
14 return activeWord;

For p > 0, when decoding is done to a smaller segment
length, there are two possible cases for every block in the
word being decoded:
• Case 1 (Lines 3-7): The activeBlock is a literal. In this

case, the activeBlock is divided into 2|p| (for us, 2 or
4) literal blocks with smaller segment length and added
to the activeWord as literals. The activeWord will be
iterated in the main query processing function.

• Case 2 (Lines 8-10): The activeBlock is a fill. In this
case, a single fill block is added with same fill value
and the number of segments is multiplied by 2|p| using
a shift-left operation.

As an illustration of Algorithm 2, consider the bit vector in
Figure 4. The figure shows the conversion from s = 30 down
to s = 15. First, the fill block with zeros is stored into a fill
block with s = 15 and double the number of segments. Then
the second block in the word is stored into two literals with
s = 15. Note that, since decoding is done in memory only
and nSegments is a 64-bit number, the multiplication of the
number of segments in the fills from larger segments lengths
to smaller lengths never require extra segments to encode the
fills.

Now let us consider the case where p < 0 for converting
from a smaller segment length s up to a larger segment length
s×m. The pseudocode for this decoding algorithm is shown
in Algorithm 3. Here, it is required to add one more structure
that allows us to temporarily store partial words. alignedBlock
also serves as a buffer for storing leftover bits from previous
blocks, when the division of nSegments by m has a non-
zero remainder. For every block contained in the word being
decoded, we have several cases:

1000 000000000000000000101000001000 101010000000100000000000100001

 0010100000100001

000000000000000000101000001000

101010000000100000000000100001

1000 001010000010000

 10101000000010000

1010100000001000

 0000000001000010

000000000100001 ...

activeBlock s=30

new Block s=15

activeBlock s=30

new Block s=15

new Block s=15

64-bit VAL-WAH(s=30)

64-bit VAL-WAH(s=15)

Fig. 4. Example of converting a 64-bit VAL compressed bit vector using s=30 down to a 64-bit VAL compressed bit vector using segment s=15.

• Case 1 (Lines 3-6): The alignedBlock is empty, i.e., there
are no bits left from the previous decoded block or word.
If the activeBlock is a literal, then it is added to the
alignedBlock as a literal and the alignedBlock is marked
to be incomplete. The alignedBlock is not yet added to
the activeWord.

• Case 2 (Lines 7-11): The alignedBlock is empty and the
activeBlock is a fill, then its fill is added to allignedWord
with a factor of m less nSegments. The alignedBlock
used to store the remainder bits from the division by m.
They are stored as s bits in a literal.

• Case 3 (Lines 12-18): The alignedBlock is not empty,
i.e., there are leftover literal bits from a previous block,
and activeBlock is also a literal. In this case, the active-
Block is appended to alignedBlock. If the alignedBlock is
filled with s×m bits, then it is added to the activeWord
and cleared.

• Case 4 (Lines 19-25): The alignedBlock is a literal and
activeBlock is a fill. In this case, the alignedBlock is
appended with literals from the activeBlock until it is
filled with s × m bits. The alignedBlock is appended
to activeWord as a literal block. Then the remaining
blocks in activeBlock are appended to activeWord as
a fill. If there are any leftover bits from dividing the
remaining blocks by m, then they are stored as a literal
in alignedBlock.

Aligning blocks with different compression lengths poses
a small overhead in the VAL query processing algorithm.
However, in general, VAL compresses better and often requires
fewer iterations to complete the query, as described in Algo-
rithm 1. This translates into performance benefits not only in
terms of compression ratio, but also in terms of total query
time execution when compared to WAH.

V. EXPERIMENTAL RESULTS

In this section, the performance of VAL bitmap compression
framework is evaluated over both real scientific and syntheti-
cally generated data. We first describe the experimental setup
and the data sets used. Then we show the effectiveness of
the tuning parameter λ to trade-off size against query time
and then evaluate the impact on performance of the alignment
imposed over the segment lengths by comparing to Variable
Length Coding (VLC). We then compare the performance of

Algorithm 3: A Method for Decoding Up (p < 0).
Input: Compressed word containing blocks of length s; N : the number

of blocks in the word; possible values 1,2, m = 2|p|: factor of
the new segment length

Output: activeWord - VAL Word containing decoded blocks of
length s×m

1 for i = 1→ N do
2 activeBlock= i’th block;
3 if alignedBlock.nSegments=0 then
4 if activeBlock.isLiteral() then
5 alignedBlock.addLiteral(activeBlock.value)
6 end
7 else
8 activeWord.addFillBlock(activeBlock.fill,

activeBlock.nSegments/m);
9 store the leftover bits in alignedBlock, if any

10 end
11 end
12 else
13 if activeBlock.isLiteral() then
14 alignedBlock.addLiteral(activeBlock.value);
15 if alignedBlock.isComplete() then
16 activeWord.addLiteralBlock(alignedBlock.value)

alignedBlock.clear()
17 end
18 end
19 else
20 while alignedBlock.isNotComplete() do
21 alignedBlock.addLiteral(activeBlock.fill)

activeBlock.nSegments- -
22 end
23 activeWord.addLiteralBlock(alignedBlock)

alignedBlock.clear()
activeWord.addFill(activeBlock.fill,
activeBlock.nSegments/m) store the leftover bits in
alignedBlock, if any

24 end
25 end
26 end
27 return activeWord

VAL-WAH on sorted bitmaps with other bitmap compres-
sion schemes: Position List Word Aligned Hybrid (PLWAH),
Enhanced Word Aligned Hybrid (EWAH), and Word Aligned
Hybrid (WAH). Finally, we introduce a Gain metric computed
as the harmonic mean of compression and query time ratios
(normalized using the performance for verbatim or uncom-
pressed bitmaps) to evaluate the combined performance.

A. Experimental Setup
The synthetic data sets were generated using two different

distributions: uniform and zipf. These two distributions
are representative of real-world bitmaps because continuous
attributes and even high cardinality attributes are transformed
using discretization (or binning) before creating the bitmap
indices. The distribution of the data into bitmap indices de-
pends on the method used for discretization. For example, if
equi-populated bins (containing roughly the same number of
objects) are used, the distribution of the bitmaps is uniform.
However, if the discretization method is based on clustering,
or on the density of data, then the bins would follow a skewed
distribution. The zipf distribution generator assigns each bit a
probability of,

p(k, n, f) =
1/kf∑n
i=1(1/i

f)

where n is the number of elements determined by cardinality,
k is their rank, and the coefficient f creates an exponentially
skewed distribution. We generated data sets for f = 1 and
f = 2.

Unless otherwise noted, the synthetic bitmap index contains
10 million rows and 100 bit vectors (4 attributes each with a
binning cardinality of 25). We also included two real data sets
in our experiments:
• kddcup1. This data set was used for The Third

International Knowledge Discovery and Data Mining
Tools Competition, which was held in conjunction with
KDD’99. The data set contains 4, 898, 431 rows and 42
attributes. Continuous attributes were discretized into 25
bins.

• berkeley earth2. The Berkeley Earth Surface Tem-
perature Study has created a preliminary merged data set
by combining 1.6 billion temperature reports from 16
preexisting data archives. For our experiments we use
a subset containing 14, 786, 160 rows and 7 attributes.
Each attribute was discretized with up to 25 bins.

Discretization over these real data sets was done using the least
squares quantization method [25]. For sorted data experiments,
Gray-code ordering [19] was used to reorder the bitmaps.

All experiments were executed over a machine with an Intel
Core i7-2600 processor (8MB Cache, 3.20 GHz) and 8 GB
of memory, running Windows 7 Enterprise. Our code was
implemented in Java for relative performance measurements
with open-source implementations of EWAH and Concise.

A set of 500 queries over two randomly selected columns
(from different attributes) was generated. Each query applies
a logical AND over the corresponding bitmaps. For query
execution time, we do not take into account the time required
to load the bitmaps into memory. Note that comparatively, this
presents an advantage for the techniques that produce larger
bitmaps (EWAH and WAH64). However, since all bitmaps
fit into main memory, loading time can be done once and
amortized over a large number of queries. The query set was

1http://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data
2http://berkeleyearth.org/dataset/

executed six times, and the result for the first run was discarded
to prevent Java’s just-in-time compilation from skewing results.
The times from the other five runs were averaged and reported.

For all experiments, we assume w = 64 bits, the alignment
factor b = 16, and λ parameter is set between 0 and 1
to choose among s ∈ {15, 30, 60}. The query processing
involving two bitmap vectors encoded using different segment
lengths would convert the larger encoding down to the smaller
one, as presented in Algorithm 2.

B. Tuning Parameter λ
The parameter λ allows users to tune the aggressiveness of

our compression technique. Specifically, λ→ 0 prioritizes on
the index size, while λ→ 1 prioritizes speed.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 0.2 0.4 0.6 0.8 1

C
o

m
p

re
ss

io
n

 R
at

io
Lambda

2M-rows 4M-rows 6M-rows 8M-rows 10M-rows

(a) Synthetic Data (zipf2) - Sorted: Compression Ratio

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

Q
u

er
y

Ti
m

e
(m

s)

Lambda

2M-rows 4M-rows 6M-rows 8M-rows 10M-rows

(b) Synthetic Data (zipf2) - Sorted: Query Time

Fig. 5. VAL: Effects of λ on Compression and Query Time: Synthetic Data

Figure 5 shows the effect of λ over the compression ratio
and query time for a synthetic sorted data set with zipf-2
distribution. Figure 5(a) shows the compression ratio as λ is
varied from 0 to 1 by increments of 0.2. The compression ratio
is computed as sizecompressed/sizeverbatim. As expected,
compression ratio increases (i.e., we lose compression) as λ
increases, which translates into faster query times as captured
in Figure 5(b). Similar results were also observed for the real
data sets and for non-sorted data.

When λ = 0.0, VAL uses the smallest segment length (s =
15) for encoding over 70% of the columns, which reduces to
little over 20% for λ = 0.8. Increasing λ allows more columns

to compress with larger segments (e.g., 30 and 60), translating
into speedups because less decoding is required, even when
these columns are queried together with columns compressed
using s = 15.

For the remainder of this section, to facilitate the interpre-
tation of the results, we denote VAL with λ using VALλ, e.g.,
VAL0 means λ = 0.

C. Evaluating Segment Alignment

This set of experiments demonstrates the importance of
enforcing the logical alignment of bit vectors for query pro-
cessing efficiency. Figure 6 shows the compression ratio and
query execution time when comparing VAL0 to VLC and WAH
(using 32-and 64-bit words). VLC is allowed to choose segment
lengths s ∈ {7, 14, 21, 28}. As can be seen, VLC achieves the
best compression due to the shorter length options. Its size
represents only 55%− 75% of VAL0. However, during query
time, VLC performs 3 to 4 times worse than VAL0. VAL0,
on the other hand, achieves better compression performance
than both WAH32 and WAH64 with comparable query times to
WAH64, and always faster than WAH32. Note that in general,
VAL-WAH can rarely be faster than WAH64 because WAH64
does not decode activeBlocks. VAL-WAH shows considerable
improvement in compression ratio (less than half the size
of both WAH32 and WAH64) without any degradation in
query execution performance, which provides evidence for the
effectiveness of our framework.

D. Comparison over Sorted Data

We now compare our approach against WAH 32-bit, WAH
64-bit, PLWAH 32-bit, EWAH 32-bit, and EWAH 64-bit.
In these experiments, we only show VAL-WAH results for
λ = 0.2. We compare using both real data sets, and the
zipf1 and zipf2 synthetic data sets with 10 million rows.
To provide a reader-friendly comparison, we normalized the
results using the verbatim bitmaps for query time in the
same way as compression ratio. We compute query time
ratio as: query timecompressed/query timeverbatim. There-
fore, for both compression ratio and query time ratio, smaller
values imply better performance.

Figure 7 shows the comparison for sorted synthetic data.
As can be seen, for all three distributions, VAL offers the best
compression ratio. The greater improvement is for uniform dis-
tributions, because for skewed distributions, WAH and PLWAH
are also able to compress effectively. VAL0.2 compressed
bitmap sizes varying between 60% − 80% of the size of
PLWAH and 55%− 70% of WAH32. Although EWAH does not
compress well, Figure 7(b) shows that it offers the best query
time for all distributions. In terms of query time, VAL0.2
is up to 25% faster than WAH32 and up to 15% faster than
PLWAH. For larger values of λ, sometimes VAL-WAH can be
faster than WAH64. For instance, when we chose λ = 0.9
on the kddcup sorted data set, VAL-WAH was 5% faster
than WAH64, and this is due to a slightly smaller size of
the compressed bitmap. Figure 8 shows the same experiment
for the real data sets. The same patterns emerged for real

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

2M 4M 6M 8M 10M

C
o

m
p

re
ss

io
n

 R
at

io

Rows
VAL0 VLC WAH32 WAH64

(a) Synthetic Data (zipf2) - Sorted: Compression Ratio

0

20

40

60

80

100

120

2M 4M 6M 8M 10M

Q
u

er
y

Ti
m

e
(m

s)

Rows

VAL0 VLC WAH32 WAH64

(b) Synthetic Data (zipf2) - Sorted: Query Time

Fig. 6. Effects of segment alignment on Compression and Query Time:
Synthetic Data

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

zipf2 zipf1 uniform

C
o

m
p

re
ss

io
n

 R
at

io

PLWAH32 EWAH32 EWAH64 WAH 32 WAH64 VAL0.2

(a) Compression Ratio: Synthetic Data

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

zipf2 zipf1 uniform

Q
u

er
y

Ti
m

e
R

at
io

PLWAH32 EWAH32 EWAH 64 WAH 32 WAH64 VAL 0.2

(b) Query Time Ratio: Synthetic Data

Fig. 7. Compression and Query Time Ratio Comparison - Synthetic Data:
Sorted

data as for synthetically generated data. VAL-WAH offers the
best compression and better query time than WAH32. EWAH
has the best performance in terms of query time, however
this is mostly due to a difference in implementation. In our
experiments we used ArrayLists for storing the bit vectors in
all encoding techniques except EWAH. For EWAH, we compared
using the implementation offered by [18].

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

kddcup berkeley earth

C
o

m
p

re
ss

io
n

 R
at

io

PLWAH32 EWAH32 EWAH64 WAH 32 WAH64 VAL0.2

(a) Compression Ratio: Real Data

0

0.005

0.01

0.015

0.02

0.025

0.03

kddcup berkeley earth

Q
u

er
y

Ti
m

e
R

at
io

PLWAH32 EWAH32 EWAH 64 WAH 32 WAH64 VAL 0.2

(b) Query Time Ratio: Real Data

Fig. 8. Compression and Query Time Ratio Comparison - Real Data: Sorted

To help simplify the discussion on trade-off, we combine
compression ratio and query time ratio into a single metric,
gain. Presuming that speedup and compression rates are
equally weighed, we can use the harmonic mean HM of the
two ratios,

gain =
1

HM
=

query ratio+ compression ratio

2× query ratio× compression ratio

Because the harmonic mean emphasizes the smaller ratio, it
captures the combined rate of speedup and compression more
faithfully than an arithmetic mean. Furthermore, we inverted
HM so that the larger values imply better performance, and the
goal would be to show higher gain. The gain across all data
sets is presented in Figure 9. The combined gain of VAL-WAH
is higher than the other encoding methods.

E. Results over Non-Sorted Data
Although the motivation for encoding bitmaps using differ-

ent segment lengths came from observations of the run-length
deterioration for sorted data, performance gains can also be
obtained for non-sorted data, as seen in Figure 10. In this case,
EWAH is clearly the best encoding, followed by VAL0.2. This
is due to a better query execution time given that EWAH uses

0

100

200

300

400

500

600

kddcup berkeley earth zipf2 zipf1

G
ai

n

PLWAH 32 EWAH32 WAH 32 VAL 0.2

Fig. 9. Combined Gain for Sorted Bitmaps

Arrays for storing the bit vectors, while all the other techniques
use ArrayLists. Because runs are very short, neither WAH nor
PLWAH are able to compress very effectively.

0

10

20

30

40

50

60

kddcup berkeley earth zipf2 zipf1

G
ai

n

PLWAH32 EWAH32 WAH 32 VAL 0.2

Fig. 10. Combined Gain for Non-sorted Bitmaps

0

50

100

150

200

250

300

350

10 50 100 500 1000 5000 10000

G
ai

n

Cardinality
PLWAH EWAH32 EWAH64 WAH32 WAH64 VAL 0.2

Fig. 11. Combined Gain for Non-sorted Bitmap over Cardinality

To evaluate the effect of cardinality on gain, we generated
a zipf1 data set with 10 million rows and two attributes of
increasing cardinality from 10 to 10K values. Figure 11 shows
the gains obtained from this experiment. Larger cardinality
produces bitmaps that are more sparse. As expected, EWAH
has the smallest gain, followed by WAH. The reason is that, for
sparse bitmaps, EWAH does not compress as effectively as WAH,
and the query times are not much better than those of WAH.
Because VAL0.2 and PLWAH are able to compress better, in

this case, they also require less decoding (fewer words result
in fewer iterations in Algorithm 1). Still, VAL0.2 has up to
3% more gain over PLWAH32.

In summary, no encoding is better than all others. However,
these results provide evidence that there are specific scenarios
in which one method should be preferred over the others.
We have shown that by integrating WAH into VAL, we
can improve compression without adverse implications for
query performance. Similar improvements are expected for
the other encodings once they are integrated into our VAL
framework. Furthermore, all methods combined can achieve
greater compression and better query time than when only
individual methods are applied. We believe these results pro-
vide compelling evidence to support our position that a unified
bitmap encoding and querying framework is desirable.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a tunable framework for variable
aligned bitmap compression. Our framework enables several
run-length aligned compression algorithms to coexist together
and extends them to allow variable segment lengths. Efficient
query execution algorithms over bitmaps compressed using dif-
ferent encoding lengths are proposed. A user-defined λ param-
eter allows users to adjust the trade-off between compressed
index size versus expected query execution speed. As a proof
of concept we implemented WAH within the framework and
performed an extensive performance evaluation. This VAL-
WAH approach is very effective for sorted data, particularly for
skewed data distributions and is able to outperform WAH. We
also show that net gains can be obtained when applying this
framework to non-sorted data especially for high-cardinality
attributes. The flexibility of having variable segment lengths
but still maintaining the alignment of the blocks and the
segments in the bitmap are the key of the success of the
proposed framework.

For future work, we can implement other word-aligned
bitmap compression techniques within VAL. We plan to im-
prove the decision process for the method and segment length
using the λ parameter and gathering bitmap statistics to make
an informed decision considering the expected performance of
the different encodings and estimated bitmap size with variable
segment lengths. Given the improvements observed from incor-
porating WAH into the framework and the performance results
for fixed-length PLWAH and EWAH in our experiments, we
are confident that adapting other methods into this generalized
framework will translate into further improvements in both
compression size and query execution time.

REFERENCES

[1] H. K. T. Wong, H. fen Liu, F. Olken, D. Rotem, and L. Wong, “Bit
transposed files,” in Proceedings of VLDB 85, pp. 448–457, 1985.

[2] I. Spiegler and R. Maayan, “Storage and retrieval considerations of
binary data bases.,” Inf. Process. Manage., vol. 21, no. 3, pp. 233–254,
1985.

[3] K. Stockinger and K. Wu, “Bitmap indices for data warehouses,” in In
Data Warehouses and OLAP. 2007. IRM, Press, 2006.

[4] “Apache Hive Project, http://hive.apache.org.”

[5] K. W. et al., “Fastbit: Interactively searching massive data,” in SciDAC,
2009.

[6] F. Fusco, M. P. Stoecklin, and M. Vlachos, “Net-fli: On-the-fly compres-
sion, archiving and indexing of streaming network traffic,” Proceedings
of the VLDB Endowment, vol. 3, no. 2, pp. 1382–1393, 2010.

[7] A. Romosan, A. Shoshani, K. Wu, V. M. Markowitz, and K. Mavrom-
matis, “Accelerating gene context analysis using bitmaps,” in SSDBM,
p. 26, 2013.

[8] Y. Su, G. Agrawal, J. Woodring, K. Myers, J. Wendelberger, and J. P.
Ahrens, “Taming massive distributed datasets: data sampling using
bitmap indices,” in HPDC, pp. 13–24, 2013.

[9] K. Wu, E. J. Otoo, A. Shoshani, and H. Nordberg, “Notes on design
and implementation of compressed bit vectors,” Tech. Rep. LBNL/PUB-
3161, Lawrence Berkeley National Laboratory, 2001.

[10] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing bitmap indices with
efficient compression,” ACM Trans. Database Syst., vol. 31, pp. 1–38,
Mar. 2006.

[11] A. Colantonio and R. Di Pietro, “Concise: Compressed ’n’ composable
integer set,” Information Processing Letters, vol. 110, no. 16, pp. 644–
650, 2010.

[12] F. Deliege and T. Pederson, “Position list word aligned hybrid: Optimiz-
ing space and performance for compressed bitmaps,” in Proceedings of
the 2010 International Conference on Extending Database Technology
(EDBT’10), pp. 228–239, 2010.

[13] F. Corrales, D. Chiu, and J. Sawin, “Variable Length Compression
for Bitmap Indices,” in DEXA’11, (Berlin, Heidelberg), pp. 381–395,
Springer-Verlag, 2011.

[14] G. Antoshenkov, “Byte-aligned bitmap compression,” in DCC ’95:
Proceedings of the Conference on Data Compression, (Washington, DC,
USA), p. 476, IEEE Computer Society, 1995.

[15] K. Wu, E. J. Otoo, and A.Shoshani, “Compressing bitmap indexes for
faster search operations,” in Proceedings of the 2002 International Con-
ference on Scientific and Statistical Database Management Conference
(SSDBM’02), pp. 99–108, 2002.

[16] S. J. van Schaik and O. de Moor, “A memory efficient reachability
data structure through bit vector compression,” in ACM SIGMOD
International Conference on Management of Data, pp. 913–924, 2011.

[17] D. K. Andreas Schmidt and M. Beine, “A proposal of a new com-
pression scheme for medium-sparse bitmaps,” International Journal On
Advances in Software, vol. 4, no. 3 and 4, pp. 401–411, 2012.

[18] D. Lemire, O. Kaser, and K. Aouiche, “Sorting improves word-aligned
bitmap indexes,” Data and Knowledge Engineering, vol. 69, pp. 3–28,
2010.

[19] A. Pinar, T.Tao, and H. Ferhatosmanoglu, “Compressing bitmap indices
by data reorganization,” in Proceedings of the 2005 International
Conference on Data Engineering (ICDE’05), pp. 310–321, 2005.

[20] O. Kaser, D. Lemire, and K. Aouiche, “Histogram-aware sorting for
enhanced word-aligned compression in bitmap indexes,” in ACM 11th
International Workshop on Data Warehousing and OLAP, pp. 1–8,
2008.

[21] T. Apaydin, A. c. Tosun, and H. Ferhatosmanoglu, “Analysis of basic
data reordering techniques,” in International Conference on Scientific
and Statistical Database Management, pp. 517–524, 2008.

[22] D. Lemire, O. Kaser, and E. Gutarra, “Reordering rows for better
compression: Beyond the lexicographic order,” ACM Transactions on
Database Systems, vol. 37, no. 3, pp. 20:1–20:29, 2012.

[23] A. Pinar and M. T. Heath, “Improving performance of sparse matrix-
vector multiplication,” in Proceedings of Supercomputing, 1999.

[24] H. H. Malik and J. R. Kender, “Optimizing frequency queries for
data mining applications,” in International Conference on Data Mining,
pp. 595–600, 2007.

[25] S. P. Lloyd, “Least squares quantization in pcm,” in IEEE Transactions
on Information Theory, 1982.

