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ABSTRACT
Many large-scale read-only databases and data warehouses
use bitmap indices in an effort to speed up data analysis.
These indices have the dual properties of compressibility and
being able to leverage fast bit-wise operations for query pro-
cessing. Numerous hybrid run-length encoding compression
schemes have been proposed that greatly compress the index
and enable querying without the need to decompress. Typ-
ically, these schemes align their compression with the com-
puter architecture’s word size to further accelerate queries.

Previously, we introduced Variable Length Compression
(VLC), which uses a general encoding that can achieve bet-
ter compression than word-aligned schemes. However, VLC’s
querying efficiency can vary widely due to mismatched align-
ment of compressed columns. In this paper, we present an
optimizer which recompresses the bitmap over time. Based
on query history, our approach allows the VLC user to spec-
ify the priority of compression versus query efficiency, then
possibly recompress the bitmap accordingly. In an empiri-
cal study using scientific data sets, we showed that our ap-
proach was able to achieve both better compression ratios
and query speedup over WAH and PLWAH. On the largest
data set, our VLC optimizer compressed up to 1.73× better
than WAH, and 1.46× over PLWAH. We also show a slight
improvement in query efficiency in most experiments, while
observing lucrative (11× to 16×) speedup in special cases.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Indexing
Methods
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1. INTRODUCTION
Scientific research, vital for advancing our understanding

of the world, is becoming increasingly data-intensive. For
example, exploration within bioinformatics generates ter-
abytes of data per day [1]. In high energy physics, the
Large Hadron Collider at CERN is projected to generate 15
petabytes of data annually [2], and the STAR [3] project col-
lects billions of colliding particle events. The mounting data
sets, coupled with the growing memory gap, complicates
our quest for fast analytics. To this end, such large-scale
applications store their observations or simulations in data
warehouses, which employ advanced indexing techniques.

One important technique used to represent big data is the
bitmap index [4, 5, 6], adopted by popular systems including
Oracle, IBM, and Hadoop Hive [7]. Bitmaps are leveraged
for their efficient query processing through bit-wise opera-
tions, and they can moreover be compressed aggressively to
ensure memory residency. To this end, specialized compres-
sion techniques have been designed to avoid explicit decod-
ing during query execution. Most of these compression codes
are hybrid, in that they combine run-length encoding with
literal representation of bit strings. Hence, the compressed
index usually consists of a set of run and literal codes [8].
Furthermore, current hybrid codes are word-aligned (e.g.,
32 or 64 bits) to further reduce access overhead [9, 10, 11].

Recently, we proposed the Variable Length Bitmap Code
(VLC) [12], which uses variable-length codes (instead of re-
stricting to the word size) to maximize compression. Query
execution in this case is more expensive because misalign-
ments need to be resolved at query execution time. How-
ever, there are still cases in which the queries executed using
variable lengths outperform word-aligned approaches. There
are two reasons for this anomaly. First, VLC may produce a
much smaller, cache-friendlier index. Second, the frequently
queried bitmap columns may be considerably compressed us-
ing encoding lengths that share a large greatest common di-
visor (gcd). The gcd is used to align the two bitmap columns
without requiring explicit decompression of the bitmap. Ex-
periments show that larger gcd’s translate to faster query
processing but worse compression ratio.

Our work in this paper exploits opportunities for opti-
mizing VLC’s space-time tradeoff. The proposed framework
allows users to specify the priority between compression ra-
tio vs. query efficiency. We formalize this as a constrained
bi-objective optimization problem and provide an efficient



heuristic that can adaptively adjust and recompress columns
with an optimized VLC encoding length. The main contri-
butions of this paper can be summarized as follows.

• We leverage query history for the dual purpose of com-
pressing the infrequently queried columns more aggres-
sively, and align the frequently queried columns for
faster processing.

• We introduce a trade-off parameter that allows the
user to prioritize between compression ratio and query
efficiency.

• We define a novel constrained bi-objective optimiza-
tion problem and propose an efficient greedy heuristic
to approximate solutions in polynomial time.

• We evaluate our approach using data sets generated
from real applications and compare it to two dominat-
ing compression schemes, WAH and PLWAH.

• We present an extensive discussion on lessons-learned
and the limitations of our approach.

The rest of this paper is organized as follows. Section 2
presents background on bitmap compression and processing.
Section 3 presents a formalization of the constrained opti-
mization problem and the system models we employ. To
this end, we propose a heuristic to approximate the optimal
solution. In Section 4, we evaluate our approach with an ex-
tensive experimental analysis using real data sets. Related
works are presented in Section 5. Finally, Section 6 presents
our conclusions and outlines future work.

2. BACKGROUND
A bitmap index is a coarse representation of a database

relation that can be queried directly. Essentially, it is a two-
dimensional array B[m,n] where the n columns represent
value bins and the rows correspond to m tuples in a relation.
To transform a table into a bitmap, each attribute is first
partitioned into bins that might denote a value or a range
of values. In the simple bitmap encoding, an element bi,j ∈
B = 1 if the jth attribute in the ith tuple falls into the
specified range and 0 otherwise.

One important property is that bitmaps can be queried
directly using fast, hardware-supported bitwise operations.
For example, consider Table 1. It shows a bitmap index for
a very simple relation consisting of two attributes: age and
Car Owner. The age attribute has been discretized into
three bins: a1 = [0, 20], a2 = [21, 40], a3 = [41,∞]. The
car owner attribute requires two bins: yes indicating the
individual does own a car, and no indicating the opposite.
To find everyone under 21 who does own a car, the processor
can apply a bitwise AND of a1 and yes, and then retrieve
the matching tuple t2 from disk.

Although a single bitmap is an abbreviated representation
of the data, bitmaps can still become too large to be con-
tained in core memory. To this end, bitmaps are often com-
pressed using hybrid run-length encoding (RLE) schemes.
A pure RLE represents sequences of similar data values
(i.e., runs) as a (run-length, data value) pair. For exam-
ple, an RLE would represent the sequence 〈00000001011〉
as 〈(7, 0)(1, 1)(1, 0)(2, 1)〉. In this example, compression is
only achieved for the longer run of zeros. RLE schemes can
in fact generate larger codes if long runs are not abundant

Tuples Columns (Bins)
Age Car Owner

a1 a2 a3 yes no
t1 0 1 0 0 1
t2 1 0 0 1 0
t3 0 0 1 0 1

Table 1: An Example Bitmap Index

in the data. To this end, a hybrid RLE uses two encoding
atoms fills and literals. A fill atom is used to represent long
runs in the data, as a (run-length, data value) pair. The
literal atoms are used to represent short runs and sequences
of noisy, heterogeneous data values verbatim. A hybrid
RLE might encode the above example as 〈(F, 7, 0)(L, 1011)〉
where F and L are used to identify fill atoms and literal
atoms, respectively.

One popular hybrid RLE used for bitmap indices is Word-
Aligned Hybrid (WAH) [9]. It compresses each column of
a bitmap independently using an encoding format that is
aligned with the computer system’s architecture. For a sys-
tem that has a 32-bit word, it first partitions a column into
segments 31 bits long (in general WAH uses a segment length
of wordsize− 1). Segments that contain heterogeneous bits
are encoded in literal atoms of the form: (0V1...V31). In
this encoding the most significant bit (MSB) is referred to
as the flag-bit and is used to distinguish between literal and
fill atoms. A 0 indicates that the atom is a literal and that
V1...V31 is the actual bit string of the corresponding seg-
ment. WAH combines consecutive homogeneous segments
and encodes them in fill atoms of the form (1FV3...V31). The
flag-bit value of 1 identifies the atom as a fill, the F (called
the fill-bit) encodes the homogeneous value of the bits and
V3...V31 is the binary representation of the run length, i.e.,
the number of segments that were compressed. For exam-
ple, a WAH word containing the value 0xC0000003 would
indicate that it was a fill atom representing a run of three
groups of 31 1s.

By aligning its segment length with the memory subsys-
tem, WAH is very efficient in query processing. To perform
an AND query between two compressed columns, WAH pro-
cesses a word from each column at a time. To process the
words, the query processor first examines the MSBs to de-
termine the type of atom. (1) If they are both literals, WAH
returns a literal that is a result of a bitwise AND of the two
words. (2) If one word is a fill and the other is a literal, it
inspects the fill-bit of the fill atom. If the fill is a run of
1s, WAH returns the literal, otherwise it returns 0. It then
reduces the number of segments encoded in the fill by 1 and
fetches a new word to replace the exhausted literal. (3) Fi-
nally, if the two words are both fills, WAH returns a new fill
that encodes the same run-length as the shorter of the two
queried words. The fill bit of the returned word is the result
of a bitwise AND applied to the fill bits of the two queried
words. WAH then performs the necessary bookkeeping and
fetches a new word to replace the exhausted fill. It is impor-
tant to note that query processing in this third case observes
a superlinear speedup.

The work presented in this paper leverages a previous
work proposed by the authors: the Variable Length Com-
pression (VLC) scheme [12]. Like WAH, VLC uses fill and



literal atoms. However, VLC allows the segment length
to vary from wordsize − 1 to 4 bits per column. For ex-
ample, VLC could compress one column using a segment
length of 28 and the next column using a length of 14. It
is worth noting that VLC is general, i.e., WAH can be rep-
resented with VLC by fixing all columns to be compressed
using wordsize− 1. The use of varying segment lengths al-
lows VLC to compress smaller runs than WAH but it also
reduces the efficiency of querying.

For segment lengths less than wordsize/2− 2, each word
requires additional parsing to retrieve the individual atoms1.
There is also an additional cost when columns that were
compressed using different segment lengths are queried to-
gether. VLC uses the (gcd) of the two segment lengths
to translate each column so that they are aligned. It was
demonstrated that, when using uncorrelated segment lengths
selected to optimize compression VLC could achieve 2.5×
better compression than WAH for some data sets [12]. How-
ever, the querying cost became prohibitive for such cases. In
this paper we, present a tunable model that allows the user
to select a preference for efficient querying or maximizing
compression ratio.

3. PROBLEM DEFINITION
As we discussed in the previous section, VLC allows bit

vectors to be compressed using any feasible segment length.
This variability of segment lengths means that the align-
ment between any two bit vectors is not guaranteed. When
two vectors are queried together, the performance is at the
mercy of the greatest common divisor gcd between the seg-
ment lengths used to compress the two vectors. Therefore, in
the best-case, and the gcd between any two segment lengths
is wordsize − 1, then that particular query runs as fast
as WAH. In the worst-case, the gcd between two segment
lengths is 1 and both bit vectors must first be decompressed
before running queries, which betrays the goal of bitmap
compression schemes.

In [12], we suggested that VLC should be constrained to
use only like-base segments. For instance, VLC-7 would only
allow bit vectors to be compressed using segment lengths
7, 14, 21, and 28 in a 32-bit system, keeping any two bit
vectors relatively aligned (worst case gcd = 7). Even with
these constrained options, the tradeoff can be significant: a
vector compressed in segment 7 is typically smaller in size,
but slower to query. Conversely, a vector compressed in
segment 28 may be faster to query, but larger in size. The
insight we make in this paper is that a bit vector need not be
bound to any particular segment length. Instead, we argue
that a bit vector’s assignment to a particular segment length
should vary over time given the current state of the query
behavior.

Abstractly, we will initially use VLC to compress the index
down as aggressively as possible. Over time, as columns are
queried together, we will possibly recompress the index such
that the frequently-queried columns become aligned with
larger segment lengths, while the sparsely-queried columns
are compressed down aggressively to save space. To guide
this dynamic recompression scheme, we leverage the query

1For segment lengths that are not a factor of wordsize
VLC packs bwordsize/seglenc atoms into a single word and
places wordsize mod seglen 0s in the remaining bits, which
will be ignored during querying.

history among all columns over time. We devise new mod-
els and define the Workload-Driven Bitmap Recompression
Optimization Problem, which requires an exponential-time
solver. To this end, we propose a greedy heuristics to ap-
proximate the optimal solution.

3.1 System Models
Our objective is to obtain, per bitmap column, an opti-

mal segment length that is both efficient for querying and
also produces the smallest possible file size. To solve this
optimization problem, we formulate a mathematical model
to characterized the degree of relationship between file com-
pression size versus query time. This model produces the
target objective encoding lengths for the bitmap columns.
For clarity, we define all the terms used in our model in
Table 2.

Notation Description

C = {c1, . . . , cn} The set of n columns in the bitmap index.
S = (1, . . . ,m) A vector of segment lengths, where m is

the machine’s word size.
τ Optimization time intervals.

Hτ Query history for all columns at time τ .

ĥj,k(τ) ∈ Hτ Estimated pairwise query frequency of
columns cj and ck at time τ .

hj,k(τ) Observed pairwise query frequency of
columns cj and ck at time τ .

A A segment length assignment for the n
columns.

ai,j ∈ A Segment-to-column assignment bit: 1 if cj
is compressed with segment length i, and
0 otherwise.

uszj Uncompressed size of column cj .
cszi,j Compressed size of column cj with seg-

ment length i ∈ S.
WCR(A,Hτ ) Workload compression ratio given history

Hτ and assignment A.
WQ(A,Hτ ) Workload query-time ratio given history

Hτ and assignment A.
λ ∈ [0, 1] Size/speed tradeoff parameter. A small

value prefers compression, and a large
value prefers query efficiency.

iu ∈ S The initial user-input segment length for
our heuristic.

Table 2: Notation Reference

Let a bitmap index be represented by a set of n columns
C = {c1, . . . , cn}. In VLC, a column can be compressed us-
ing a segment length S = (1, 2, . . . ,m), where m is the ma-
chine’s word size. In our proposed recompression scheme, we
monitor our system using a discrete time model. The time
interval of interest is τ ∈ {1, 2, . . . , T} for an arbitrary large
T . We assume the database system receives an arbitrary
number of queries over time, and we let hj,k(τ) ∈ [0, 1] de-
note the pairwise query frequency between columns cj and
ck observed within time τ and τ−1. To capture the querying
behavior, we store a history,

Hτ = {ĥj,k(τ) | 1 ≤ j, k ≤ n} (1)

where ĥj,k(τ) is the moving average of the query frequency
between columns cj and ck at time τ ,

ĥj,k(τ) = α · hj,k(τ − 1) + (1− α) · ĥj,k(τ − 1)

This function weighs the most recently observed query fre-
quency hj,k(τ−1) most heavily, while the remaining history



observes an exponential decay in their contribution in gen-
erating the prediction. The use of exponential moving aver-
age is well-established to model temporal trends due to its
O(1)−time update operation [13, 14]. In our formulation,

we let ĥj,k(0) = 0 ∀j, k be the base history and α = 0.7.
Each column cj in the bitmap has an initial uncompressed

size of uszj . We let cszi,j represent the resulting size for
column cj when compressed with segment length i ∈ S. We
further define:

A =

 a1,1 . . . a1,n
...

. . .
...

am,1 · · · am,n

 (2)

as a segment assignment, where ai,j = 1 if segment length i
is used to compress column cj , and ai,j = 0 otherwise. It is
important to note that, because a column can only be com-
pressed using one segment length at any time,

∑m
i=1 ai,j = 1

must hold for all j.
Given a segment assignment A, the compression ratio of

a column cj can thus be defined,∑m
i=1 ai,j · cszi,j

uszj
(3)

Specifically, it is the ratio between the term cszi,j (which
is the compressed size of cj using the segment length i as
given by A) and uszj , which is the uncompressed size of cj .
The total index compression ratio is given intuitively by the
summation across all columns cj ,∑n

j=1

∑m
i=1 ai,j · cszi,j∑n
j=1 uszj

(4)

However, we need a compression ratio that can addition-
ally capture the query history. This metric should reward
the cases where the infrequently queried columns are com-
pressed more aggressively. Given history Hτ and segment
assignment A we define the workload-based compression ra-
tio as follows:

WCR(A,Hτ ) = (5)

1−
∑n
j=1

∑m
i=1(1− 1

n

∑n
k=1 ĥj,k(τ)) · ai,j · cszi,j∑n

j=1 uszj

This model is derived directly from Eq. (4), but we factor in

ĥ(τ). For a given column cj , the term 1
n

∑n
k=1 ĥj,k(τ) is its

expected query frequency. We subtract this term from 1 to
reward smaller compression sizes for columns with low query
frequencies and reduce the penalty for columns with high
query frequencies. Initially, when there is no history (i.e.,

ĥj,k(τ) = 0 ∀ j, k), the term reduces to Eq. (4). Finally, we
take the difference from 1 because we will seek to maximize
this normalized value later.

The next step is to model the workload-based query ef-
ficiency. We do not assume any prior knowledge of query
response times, and instead leverage a simple relationship
between query efficiency and column alignment. Previous
studies [15, 8, 12] have validated that query performance
between two columns increases if they are aligned, i.e., com-
pressed using the same segment length (best case) or mul-
tiples of the same segment length. Performance generally
increases when the aligned segment lengths approach the
machine’s word size m. Specifically, this observation trans-
lates to greater query efficiency if the greatest common di-

visor (gcd) between the segment lengths used to compress
any two columns approaches m. Given a vector of segment
lengths S = (1, 2, . . . ,m) and a segment assignment A at
time τ , we define the workload-based query efficiency ratio
as,

WQ(A,Hτ ) = (6)

1

β
·
n∑
j=1

n∑
k=j+1

ĥj,k(τ)

[m−1∑
ij=1

m−1∑
ik=1

aij ,j · aik,k · gcd(ij , ik)

]
where

β =

∑n
j

∑n
k ĥj,k(τ) · (m− 1) · n!

2(n− 2)!

The outer double-summation iterates through each combina-
tion column pairs cj and ck. For each combination pair, the
inner summations produce the gcd of the segment lengths
prescribed to cj and ck by the given map A. This term is
further factored with the query frequency between the two
columns. The 1

β
term normalizes WQ to a range between

[0, 1]. Specifically, we divide by n!/2(n − 2)!, the size of all
column pair combinations, the maximum attainable segment
length m− 1, and the total column history,

∑n
j

∑n
k ĥj,k(τ).

Initially when there is no history, WQ reduces to 0 for any
input segment assignment A. Conversely, if all history el-
ements ĥj,k(τ) = 1, WQ produces 1 if A assigns m − 1
segment length to all columns.

3.2 Optimization Problem
With the two models WCR and WQ, we can now define

the Workload-based Bitmap Recompression Problem. Given
a segment assignment A and the query history Hτ , we obtain
a pair of values P (A,Hτ ) = (WCR(A,Hτ ),WQ(A,Hτ )).
Because the range of values from both models is normalized
to 1, we need only to minimize the distance to the ideal pair
P ∗ = (1, 1). Thus, we obtain the following cost objective,

dist
(
P (A,Hτ ), P ∗, λ

)
= (7)√√√√(

(1− λ) · (WCR(A,Hτ )− 1
)2

+(
λ · (WQ(A,Hτ )− 1

)2
This cost objective is an augmented version of euclidean
distance between the two pairs. The newly integrated term
λ ∈ [0, 1] is a tradeoff parameter that allows users to adjust
their preference between compression size and query speed.
A smaller λ gives preference to higher compression ratio,
while a larger value prefers query efficiency.

The goal of this objective is to find an optimal segment
assignment A∗ that would yield a pair with the shortest
λ-augmented distance to P ∗. Specifically, our constrained
optimization problem can be defined as follows,

Minimize
A

dist
(
P (A,Hτ ), P ∗, λ

)
(8)

Subject to :

m∑
i=1

ai,j = 1, ∀j (C8.1)

n∑
j=1

ai,j = 0, ∀i < 4 ∨ i = m (C8.2)

Constraint (C8.1) ensures that only one segment length is
assigned to a column. Constraint (C8.2) is needed to require
that only feasible segment lengths are used for compression.



For instance, VLC cannot use a segment length m, which is
the machine’s full word length. Similarly, a segment length
i < 4 do not have enough bits to represent useful informa-
tion. Solving for the optimal solution A∗ is NP-Hard with
an O(nm) complexity, since we must evaluate all of A’s pos-
sible bit-permutations. To this end, we next describe the
design of a greedy polynomial-time heuristic that can pro-
vide approximate solutions.

3.3 Algorithm Design
In this section, we describe a greedy heuristics that can

solve for an approximate solution. In our approach, referred
to as Workload-based Greedy Bitmap Optimization (wg),
we allow the user to input a segment length, iu ∈ S. The
algorithm computes A while confined to using only mul-
tiples of iu so that query alignment is enforced. Recall
that queries typically run faster given large gcd between the
queried columns’ segment lengths. To do this, we augment
the original objective defined in Eq. 8 by adding a third
constraint,

n∑
j=1

ai,j = 0, if (i mod iu) 6= 0 (C8.3)

The compression scheme that is produced by this approach
is illustrated in Figure 1. Notice that the user input iu serves
as the base segment length, and all columns are compressed
using a multiple of iu.

...

Columns

c1 c2 c3 cn�1 cn

iu

2iu

Figure 1: Segment Encoding Produced by wg

The heuristic to solve for A is presented in Algorithm 1.
The algorithm inputs a set of columns C = {c1, ..., cn}, the
user-input segment length iu, the tradeoff parameter λ ∈
[0, 1], and the current history Hτ then returns a segment as-
signment A. Presumably, the user enters iu, 4 ≤ iu ≤ m− 1
to meet constraint (C8.2). On Lines 2 and 3, we initial-
ize the assignment A[m,n] such that iu is initially used to
compress all columns. On Lines (4-6), we compute distance
D, which is defined as the current-best distance to the ideal
point P ∗, as given in Eq. (7). Next, we iterate through each
column cj ∈ CS. To ensure that segment length i meets
the new constraint (C8.3), i increments by iu each iteration.
We reset column j to use segment i by swapping the bit
value with the previous iteration (Lines 12). The swapping
must be done to ensure constraint (C8.1). Given this new
setting, we compute the local distance d to the ideal again
on (Lines 13-14). If this d yields is closer to D, then we save
the current configuration into temp (Lines 15-18). After all
the columns have been looped through, we return temp as
the segment assignment for all columns (Line 22).

This algorithm is greedy because temp only holds the lo-
cally optimal assignment as we traverse over the columns.

Algorithm 1 wg(C, iu, λ, Hτ )

1: {* Initialize segment assignment structure *}
2: A′[i, j]← 0 ∀i, j
3: A′[iu, j]← 1 ∀j
4: P ∗ ← (1, 1)
5: P ← (WCR(A′, Hτ ),WQ(A′, Hτ ))
6: D ← dist(P, P ∗, λ)
7: for all columns cj ∈ C do
8: i← 2iu
9: while i ≤ m− 1 do

10: {* update A′ and compute the distance *}
11: {* set column j to use segment i *}
12: swap(A′[i− iu, j], A′[i, j])
13: P ← (WCR(A′, Hτ ),WQ(A′, Hτ ))
14: d← dist(P, P ∗, λ)
15: if (d < D) then
16: D ← d
17: A← A′

18: end if
19: i← i+ iu {* consider only multiples of iu *}
20: end while
21: end for
22: return A

The outer-loop iterates over n columns, whereas the inner-
loop iterates through to the maximum allowed segment length
m− 1 by step sizes of iu. Each time through the inner-loop,
we compute distance, which evaluates both WQ(A,Hτ ) and
WCR(A,Hτ ). The computation for WCR(A,Hτ ) is O(mn)
because the inner history summation can be stored incre-
mentally. On the other hand, WQ(A,Hτ ) is slighly more
expensive: the computation of the normalizing factor η is
O(n) since it is dominated by computation of the factorial,
again because the total history can be stored incrementally
as a constant. To find the complexity of the main summa-
tions, we first note that we can precompute and store the
possible gcd values in an array, therefore allowing us to ig-
nore the gcd computation time. The computation of WQ is
therefore O(m2n2), resulting in an O(m3n3) complexity for
Algorithm 1. However, since m denotes the machine’s word-
length (m = 32 or 64 on today’s machines), and because we
iterate the inner-loop on orders of ui, it can be held constant
in asymptotic analysis, resulting in O(n3).

4. EVALUATION
In this section, we present an extensive evaluation of our

approach over real data sets. First, we will explain the ex-
perimental setup and the data sets used for evaluation, then
give an analysis of our experimental results.

We evaluate our system using the following real data sets.
We have also evaluated our system using synthetic data, the
results of which are presented in [16].

• HEP is generated by a real high-energy physics appli-
cation. It contains 12 attributes, where each was dis-
cretized into ranges from 2 to 12 bins, resulting in a
total of 122 columns and 2,173,762 rows in the bitmap.
The uncompressed bitmap file is 285MB on disk.

• KDD99 is the full KDD Cup 99 data set [17], represent-
ing network traffic data for intrusion detection appli-
cations. It contains 4,898,430 rows and 42 attributes



that have been discretized into 474 columns. The un-
compressed bitmap file is 2.37GB on disk.

For the above data sets, we sorted the columns by order of
access frequency in the query file, and sorted the row using
grey code ordering to maximize runs [18, 19, 20, 21]. We gen-
erated query plans using the following method: Each query
involves two columns cj and ck which are not necessarily
distinct. These columns are drawn from a zipf distribution
to observe the well-known access skew, i.e., most queries ac-
cess a small set of pages, which contain prime attributes,
search-key attributes, etc [22, 23]. For HEP, we generated
2000 queries, and for KDD99, we generated 500 queries. All
experiments were run on a Linux 3.4.6-2.10 machine with
four AMD 48-core CPUs and 256GB of RAM.

4.1 Evaluating Cost Models and Optimization
In these first set of experiments, we are concerned with

model validation. We compare our algorithm, Workload-
based Greedy Bitmap Optimization (wg) to two popular
bitmap compression schemes, Word-Aligned Hybrid (wah)
[9] and Position-List WAH (plwah) [10]. In all plots, we
label our algorithm using the convention wg-x-y-z to de-
note the experimental run’s configuration: initial segment
length iu = x, λ = y, and τ = z. All experiments were
executed six times. We discard the results from the first run
to prevent Java’s just-in-time compilation from skewing our
results. We then average the results from the next five runs
and record the values.
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Figure 2: Evaluation on the HEP Data Set

4.1.1 HEP Data Set
Let us initially focus on the compression results for the

HEP data set, shown in Figure 2(a). This figure shows the
index size ratio as a percentage of wah along the vertical axis
over the number of queries processed (horizontal axis). As
expected, plwah compresses slightly better than wah (92%).
The two lines wg-13-0.0-100 and wg-13-1.0-100 refer to
our algorithm with user-input λ = 0 and λ = 1, respectively.
To summarize and communicate the results succinctly, we
fixed τ = 100 (i.e., optimize after every 100 queries), and
we show ui = 13 because it yielded the best results. As
can be seen in Figure 2(a), wg-13-0.0-100 compresses more
aggressively due to λ = 0.0, reducing the index size to 73%
of the size of wah index. The line wg-13-1.0-100 reflects the
results when λ = 1.0. It compresses the index in the range
of 74.8% to 81.1% of the wah index size over time. This
range indicates that the index was recompressed to grow
over time to speed up query execution. In the worst case,
we out-compress wah by 1.23× and plwah by 1.14×.

In Figure 2(b), we show the total time taken to process
2000 queries, optimizing after every τ = 100 queries. The
first 100 queries are used to both train our models and to
warm-up the CPU cache. We therefore exclude the contri-
bution of the first 100 queries from all experiments. wah

and plwah completed the remaining queries in 5.00ms and
4.62ms, respectively. In comparison, our approach when λ
is set for compression, wg-13-0.0-100, yields an execution
time of 3.13ms, for a speedup of 1.6× over wah and 1.48×
over plwah. When λ is set to prioritize queries, wg-13-1.0-
100 yields an execution of 2.92ms. This results in a speedup
of 1.7× over wah and 1.58× over plwah.

We computed the average latency taken to process a single
query, displayed in Table 3.

Algorithm Latency (µs)
wah 2.63
plwah 2.43

wg-13-0.0-100 1.65
wg-13-1.0-100 1.54

Table 3: Average Query Latency (HEP)
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To provide additional support for our models’ effective-
ness, we present the average segment lengths used to com-



press the columns for the HEP data set in Figure 3. We
display the average segment lengths generated using an ini-
tial segment length of iu = 13 for λ = 0.0 and λ = 1.0. The
vertical bars in the plot denote the standard deviations. In
both settings, we can see that the average column segment
lengths converge quite quickly. The standard deviations are
shown only for wg-13-1.0-100, and these expectedly high
due to a bimodal distribution: When iu = 13, there are only
two segment lengths (13 and 26) in which a word can be en-
coded. The distribution of HEP’s 122 columns compressed
using lengths 13 and 26 are 91 and 31, respectively after
the final optimization. Take this result together with HEP

results from Figure 2, we claim that our optimizer produces
effective indices over time.

4.1.2 KDD99 Data Set
We now present the results from the same experiments

executed over the KDD99 data set. Again for clarity, we fixed
τ = 100, and we show results for a single initial segment
length, ui = 5. Recall from earlier that the results from the
first 100 queries are excluded for model training.
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Figure 4: Evaluation on the KDD99 Data Set

Let us first focus on index size results, shown in Figure
4(a). First, note that plwah compresses the index to 85% of
the wah index. Being a larger data set with nearly five mil-
lion rows, opportunities for plwah to exploit its“position list”
encoding abound, yielding greater compression. At first, it
appears that the index sizes for both settings of our algo-
rithm are equal due to the ostensible overlap in Figure 4(a),
but there are in fact minor variations in the index size, vary-

ing from 58.388% to 58.39% of wah’s index size. While the
variations are negligible in the context of index size, we will
see shortly that they significantly impact query performance.
In comparison, both of our algorithms produces indices that
were 58% the size of wah and 69% the size of plwah. Hence,
we out-compress wah by 1.73× and plwah by 1.46×.

In Figure 4(b), we show the total query time, optimizing
after every τ = 100 queries. Again, the first 100 queries have
been excluded due to initialization. wah and plwah com-
pleted the remaining queries in 3.54ms and 4.93ms, respec-
tively. In comparison, our approach when λ is set for com-
pression, wg-5-0.0-100, yields an execution time of 4.93ms.
This is equal to the execution time of plwah, but is also 1.4×
slower than wah. When λ is set to prioritize queries, wg-5-
1.0-100 yields an execution of an astounding 0.3ms, result-
ing in an 11.8× speedup over wah and 16.4× over plwah.
These results are surprising and dramatic even in this lim-
ited experiment of only 400 queries. We do not believe the
speedup is a direct result of less decoding alone. Instead, we
believe the adjustments in the compression over time ren-
dered the index to be more cache-friendly. Clearly, a deeper
treatment, including cache miss analysis, can validate this
claim, which is planned for future work.

We computed the average latency taken to process a single
query, displayed in Table 4.

Algorithm Latency (µs)
wah 8.85
plwah 12.33

wg-13-0.0-100 12.33
wg-13-1.0-100 0.75

Table 4: Average Query Latency (KDD99)

4.1.3 Optimization Interval (τ)
We now explore the effects of the optimization interval τ .

We fixed λ = 0.75 to favor query speed. We also set the
initial input segment length iu = 7 due to its wider range of
encodings (e.g., 7, 14, 21, and 28). We vary the optimization
window size τ over 100, 200, 300, 400 and 500 queries.

Figure 5(a) shows the number of columns for HEP that
were (re)compressed at each optimization interval. Initially,
all 122 columns are compressed using s = 7 as our design dic-
tates. We can make two general observations: (1) As queries
are processed, the number columns recompressed diminishes
over time. This is due to two reasons. First, λ is con-
figured to favor query performance, hence, as the columns
are recompressed into a larger segment length, it will tend
to stabilize. Second, the workload is drawn from a zipf -
distribution, where a few dominating columns are queried
the majority of the time. This skew causes the index to con-
verge to a steady-state rapidly, e.g., converging after roughly
500 queries. (2) The second observation is that a smaller τ
tends to recompress more columns over time. For instance,
after 500 queries, τ = 100 has recompressed 68 columns,
while τ = 500 has only recompressed 20. This is due to the
query history smoothing out over a longer period, leading
to less columns requiring recompression.

The result in Figure 5(b), which shows the average seg-
ment lengths of the compressed index over the querying pe-
riod, support the above arguments. We can observe the



steady increase in average segment length, converging at ap-
proximately 20. The distribution of the 122 columns com-
pressed using lengths 7, 14, 21, 28 is 37, 73, 5, 13, respec-
tively after the initial optimization, and 25, 37, 2, 58 after
the final optimization. The curious observation is that τ
does not appear to have much of an effect on the average
segment length, as seen with convergence rates being equal
after the initial 500 queries. This unexpected result suggests
that we can optimize less frequently—a welcomed result, due
to its high overhead costs. Although not shown due to space
constraints, we also observed that the size of τ does not sig-
nificantly impact total query times.
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Figure 5: Optimization Interval τ

4.2 Overhead Costs
Given an initial segment length iu = 31 our approach

(i.e., wg-31-*-*) reduces to that of wah. However, due to the
segment-length generality of our compression framework, its
querying logic is a bit more complex. Our approach must
first compute the gcd between the columns’ segments. For-
tunately, because the maximum segment length is only the
wordsize m− 1, we can precompute and memoize these val-
ues. In Table 5, we compare the total time to process 2000
queries over HEP between wah, plwah, and wg-31-*-*.

As can be seen, our approach is 20% and 31.8% slower
than wah and plwah, respectively, in a head-to-head com-
parison using the HEP data set. However, as we showed in
previous experiments, our framework’s flexibility in allowing
any segment length to be input can produce faster results if

Algorithm Query Time (ms)
wah 5.67
plwah 5.11

wg-31-*-* 6.74

Table 5: Query Processing Overhead (HEP)

the initial iu was properly selected.
Our algorithm’s O(n3) runtime is clearly affected by the

column size n, but this is not the dominating cost. The
significant time required to recompress columns is the pri-
mary concern. This factor is proportional to the number of
columns recompressed into a different segment length, which
is determined by our algorithm. In our experiments, we ob-
served the optimization overheads shown in Table 6.

Data Setting Total Overhead (ms)

HEP

wg-7-0.0-100 1621.1
wg-7-1.0-100 5047.0
wg-9-0.0-100 697.2
wg-9-1.0-100 3011.9
wg-13-0.0-100 1327.4
wg-13-1.0-100 3001.4

KDD99

wg-4-0.0-100 8189.0
wg-4-1.0-100 9652.9
wg-5-0.0-100 8536.3
wg-5-1.0-100 9728.6
wg-7-0.0-100 8318.1
wg-7-1.0-100 9249.8

wg-13-0.0-100 3728.3
wg-13-1.0-100 3746.9

Table 6: Optimization Overhead

We show the overheads for τ = 100, where the optimizer
was invoked 20 times per run. As can be seen for both
data sets, a lower value of λ tends to yield lower overheads
because columns need not be recompressed often to suit
queries. In general, it can also be seen that a larger seg-
ment length yields smaller overheads.

We show the results for iu = 13 for KDD99 to help exem-
plify this behavior. This may be due to two reasons: (1) less
time is spent encoding when segment lengths are large and
(2) there are less options (multiples) to use for encoding.
For instance, given iu = 4 the optimizer could recompress a
column from 4 to 16. At the next interval, this column could
again be recompressed to 20, 24, or 28, etc. In the case of
iu = 13, there are only two options 13 and 26. Therefore,
the opportunities for recompression is reduced. Still, the
overheads are significant compared to the total query times,
which suggests that the optimizer should only be seldom ex-
ecuted. In the previous subsection, we showed that long op-
timization intervals did not yield significantly worse results.
However, we will consider online optimization techniques in
future work.

4.3 Limitations: Summary and Discussion
Based on our findings, we summarize the important in-

sights that can be gleaned from our experimental results.
(1) The initial selection of iu is crucial and pro-

duces nontrivial, data-dependent behavior. We showed
that our results vary widely based on the selection of iu.
More interestingly, some iu actually produced both greater



compression ratios and query efficiency. This result contra-
dicts our assumption for constructing the WQ model. An
informed, systematic way to select iu is needed, and is a
subject of our future work.

(2) The optimization interval τ should be dynamic.
We showed that the optimization overhead can be quite high
compared to the actual query processing time. However,
once optimized, the remaining queries enjoy both a drastic
speedup, and the index compression ratio likewise reduces.
This suggests that, for skewed-access queries, the optimizer
should be run once initially for the history to capture the
skewed query pattern. This can be followed with less fre-
quent, offline optimizations. Given a bursty or uniformly
distributed query pattern, however, τ would have much more
impact and should vary with respect to the characteristics
of the accesses.

(3) Caching matters. Our query performance results,
particularly for the large KDD99 data set in Figure 4(b),
showed the significant impact of caching. While the query
history serves as a likely indicator of memory access pat-
terns, our models do not account for cache performance,
which breaks our original assumption that larger segment
lengths (thus, larger indices) will always query faster. A
cache-friendly optimization scheme is a major topic of our
future work.

(4) Other limitations: Our proposed scheme is further
limited as follows. If the query history is random (does
not observe a skewed pattern), the optimization overhead
will dominate. Fortunately, access skew can be expected
in most realistic systems. Another limitation is that our
models only capture two attributes queried at a time, and
consider only exact-match queries (we did not experiment
using range queries). Finally, our query sets are synthetic
and small. To this end, we will employ real traces for future
experiments. We will extend our proposed scheme to address
these limitations in future works.

5. RELATED EFFORTS
In this section, we summarize several other bitmap com-

pression schemes and the related area of workload-informed
index selection.

Aside from the aforementioned WAH [9], and VLC [12],
several other compression schemes have been designed for
bitmap indices. Byte-aligned Bitmap Codes (BBC) [8] was
the predecessor of WAH. It is a patented encoding that uses
four types of byte-aligned atoms. It uses a 7 bit segmenta-
tion length encoding scheme. Wu, et al. [9] reports in an
empirical study they found that WAH typically used 60%
more space and that it could execute the logical operations
of queries 12× faster than BBC.

The Enhanced WAH (EWAH) compression scheme is iden-
tical to WAH except in its encoding of fills [20]. In EWAH,
a fill word is halved. The 17 most significant bits encode the
flag bit, the fill value, and the run length. The lower 15 bits
a represent the number of literal words following the run
encoded in the fill. This information is used to optimize the
query processing. For example, long runs of literal values
can be ignored (not accessed) when ANDed with 0s.

COMPAX [11] is a compression scheme designed specifi-
cally for bitmaps representing network flow traffic. It com-
presses using a codebook of 4 types of words: 1) L, a word
representing a literal of 31 bits, 2) 0F, encodes fills of con-
secutive runs of 31 zeros, 3) LFL, compactly represents a

sequence of L-0F-L words where each of the three words
consist of all 0s (excluding flag bits) except for a single byte
which contains at least one 1, and 4) FLF, represents a se-
quence of 0F-L-0F words where, again, each word only con-
sists of 1 “dirty byte”. Essentially, the FLF and LFL words
allow COMPAX to store three WAH words into one word.
A study conducted by Fusco, et al. [11] showed that Com-
pax could encode network flow bitmaps using 60% less space
than WAH. However, their study was limited to bitmaps rep-
resenting network flow traffic. It is not obvious that COM-
PAX would perform similarly on bitmaps representing in-
formation outside of that domain.

Recently, Deliége and Pedersen proposed the Position-List
Word-Aligned Hybrid (PLWAH), which can achieve better
compression than WAH by addressing the situations where
single heterogeneous bit separates two runs [10]. These cases
can occur quite often in sparse data sets. In their encoding
of fill atom the two most significant bits are the fill and flag
bits, it dedicates the following five bits to a position list.
These bits are a binary representation of the heterogeneous
bit’s position in a “nearly identical” segment. In 32 bit word
compression, a nearly identical segment is one in which all
bits, except for one, have the same value as the preceding ho-
mogenous segment. Their experimental study showed that
they were able to compress 50% better than WAH without
a reduction of query processing efficiency. The authors also
propose a fixed segment length of 7, 15 or 31, which is sim-
ilar to VLC, but they apply the same length to the entire
bitmap.

Our work is tangentially related to previous work in the
areas of index selection and automatic tuning of databases.
Notably, we propose a limited type of feedback control loop
which monitors the online query activity and adjusts the
compression of the bitmap index to achieve higher efficacy.
The idea of a feedback control loop that monitor workloads
and system metrics for database tuning has been well ex-
plored, e.g., [24, 25, 26, 27, 28]. The works of Koudas [29]
and Rotem et al. [30] are probably the most closely related
work in this area. They both consider query workloads to
try optimize the boundary selection of bins to minimize the
cost of querying bitmap indices. However, to the best of our
knowledge the work presented in this paper is the first to
apply a workload based algorithms to optimize index seg-
mentation length selection.

6. CONCLUSIONS AND FUTURE WORK
Bitmap indices pervade many applications due to their

fast query processing and compressibility. However, as the
amount data continues to grow rapidly in today’s digital age,
the scientific community is actively engaging to improve ex-
isting bitmap compression algorithms. In this paper, we
proposed a novel bitmap optimization framework, which
dynamically recompresses the index over time. We mod-
eled query and compression ratios as a function of segment
lengths and workload history. We defined a constrained op-
timization problem and showed that our algorithm can gen-
erate indices that significantly outperform both WAH and
PLWAH over real data sets.

The results of our empirical study suggest that there are
a few instances where our assumption that larger segments
lengths always produces faster queries may not be true. In
future works, we must refine and extend our models to fur-
ther integrate cache consciousness. We will also investigate



the effects of having a dynamically varying optimization in-
terval τ . Finally, in 64-bit architectures, there will be many
unused bits in the fill word. We have already seen ap-
proaches, such as PLWAH, successfully take advantage of
these bits to improve compression. Breaking a long word
into variable PLWAH-based segments can prove beneficial
and complementary.
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