
Enabling Ad Hoc Queries over Low-Level

Scientific Data Sets

David Chiu and Gagan Agrawal

Department of Computer Science and Engineering
The Ohio State University, Columbus, OH 43210, USA

{chiud,agrawal}@cse.ohio-state.edu

Abstract. Technological success has ushered in massive amounts of
data for scientific analysis. To enable effective utilization of these data
sets for all classes of users, supporting intuitive data access and manipu-
lation interfaces is crucial. This paper describes an autonomous scientific
workflow system that enables high-level, natural language based, queries
over low-level data sets. Our technique involves a combination of nat-
ural language processing, metadata indexing, and a semantically-aware
workflow composition engine which dynamically constructs workflows for
answering queries based on service and data availability. A specific con-
tribution of this work is a metadata registration scheme that allows for
a unified index of heterogeneous metadata formats and service anno-
tations. Our approach thus avoids a standardized format for storing all
data sets or the implementation of a federated, mediator-based, querying
framework. We have evaluated our system using a case study from the
geospatial domain to show functional results. Our evaluation supports
the potential benefits which our approach can offer to scientific workflow
systems and other domain-specific, data intensive applications.

1 Introduction

From novel simulations to on-site sensors, advancements in scientific technology
have sparked a rapid growth in the deployment of data sources. Vast numbers
of low-level data sets, as a result, are persistently stored on distributed disks
for access, analysis, and transformation by various classes of users. Managing
these low-level data sets on distributed file systems for intuitive user access re-
quires significant consideration towards novel designs in indexing, querying, and
integration. At the same time, processes and tools from which the user accesses
and manipulates these data sets need to be high-level, if not transparent and
automatic. As a result, efforts towards realizing process interoperability and
standardized invocation have resulted in the emergence of service-oriented ar-
chitectures. However, user queries often require a composition of services in able
to derive results. And while scientific workflow management systems [1,10,19,22]
have made tremendous strides toward scheduling and execution of dependent
services, workflows are still largely composed by the user. For scientists and ex-
perts, this approach is often sufficient. But in a time when users are becoming
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more query- and goal-oriented, solutions which leverage effective use of domain
information would require significantly less effort.

In this paper we describe a scientific workflow system which enables high-level
queries over low-level data sets. Our system, empowered by a nuanced semantics
framework, constructs and executes workflow plans automatically for the user.
The approach is motivated by the following observations:

– The aforementioned trend towards service-oriented solutions in scientific
computing. The data grid community, for instance, has benefitted greatly
from borrowing web service standards for interoperability through the Open
Grid Service Architecture (OGSA) initiative [13].

– The trend towards the specification of metadata standards in various scien-
tific domains. These standards allow for clarity in both user and machine
interpretability of otherwise cryptic data sets. However, in many sciences,
metadata formats are often heterogeneous, and a unified method to index
similar information is lacking, specifically for the purposes of workflow com-
position.

In our system, data sets are required to be registered into an index of metadata
information, e.g., time, creator, data quality, etc. A simple domain ontology is
superimposed across the available data sets and services for enabling workflow
planning. Although traditional database and data integration methods (such
as the use of federated databases [24] or mediator-based systems [14,25]) can be
applied, our approach does not require a standardized format for storing data sets
or the implementation of a complex mediator-based querying framework. Our
system combines workflow composition with machine-interpretable metadata, a
domain ontology, and a natural language interface to offer simple and intuitive
ways for querying a variety of data sets stored in their original low-level formats.

Our experimental evaluation is driven through a case study in the geospa-
tial domain. In computing environments with small numbers of data sets, we
show that the benefits of our index-enabled workflow planner is unequivocally
apparent. Moreover, the scalability of these benefits are easily observable for
larger numbers of indices and data sets. Overall, we show that workflows can be
composed efficiently using data sets described in disparate metadata formats.

The remainder of this paper is organized as follows: An overview of our sys-
tem is presented in Section 2. Specifications of majors components in our system
are discussed in Section 3. Section 3.1 describes the query decomposition pro-
cess, followed by metadata registration in Section 3.2. The workflow planning
algorithm is presented in Section 3.3. Section 4 explains the results of our per-
formance evaluation on a case study in the geospatial domain. We compare our
work with related efforts in Section 5, and finally conclude in Section 6.

2 System Overview

The system architecture, shown in Figure 1, consists of four independent layers.
The design and implementation of each layer can be superseded without affecting
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Fig. 1. System Architecture

the others as long as it subscribes to some system-specified protocols. From
a high-level perspective, our system can be viewed as a workflow broker: as
users submit queries to the system, the broker plans and executes the workflows
involved in deriving the desired virtual data while hiding complexities such as
workflow composition and domain knowledge from the user.

The user specifies queries through the broker’s Query Decomposition Layer.
This layer decomposes a natural language-based query into keywords and gram-
matical dependencies using a natural language parser. The parsed set of key-
words is then mapped to concepts within the domain ontology specified in the
next layer. The Semantics Layer maintains an active list of available services,
data sets, and their metadata. While the Web Service Description Language
(WSDL) [6] is the international standard for web service description, scientific
data sets often lack a singular metadata format. For instance, in the geospatial
domain alone, CSDGM (Content Standard for Digital Geospatial Metadata) [12]
is adopted in the United States. Elsewhere, Europe and Australia have proposed
similar metadata standards. More important, XML essentially opens the possi-
bility for any user to define any descriptive data annotation, at any time. But
while their formats differ in specification, the information captured is similar:
dates of relevance, spatial region, data quality, etc. In the next section, we discuss
ways our system deals with heterogeneous metadata.

Although metadata is imperative for providing descriptions for data sets and
services, a higher level descriptor is also needed to define the relationships be-
tween the available data and services to concepts within some scientific domain.
These relationships help facilitate planning algorithms for workflow composition.
For example, there is a need for the system to understand how “water levels”
are derived using some existing data sets, services, or combinations of both. We
specify this description through a simple ontology, a directed graph with the
following requirements:

– The ontology consists of three disjoint sets (classes) C, S, and D representing
the set of domain concepts, the set of available services known to the system,
and the known domain-specific data types, respectively.

– Two types of directed edges (relations) exist: concepts may be derivedFrom
data or service nodes and a service inputsFrom concepts.
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This ontological definition, shown in Figure 2, simplifies the effort to indi-
cate which services and data types are responsible for deriving specific domain
concepts.

Next, the Planning Layer assumes that the ontology and metadata index
are in place and defined. The planning algorithm, discussed in detail in the
following section, relies heavily on the Semantics Layer. In essence, the planner
enumerates workflows to answer any particular query through traversals of the
domain ontology. The existence of needed services and data sets is identified by
the metadata index. This layer sends a set of workflows all capable of answering
the user query to the Execution Layer for processing, and the resulting virtual
data is finally returned back to the user.

In this paper we focus mainly on the Query Decomposition and Semantics
Layers. While the workflow enumeration algorithm in the Planning Layer is
also described, details on the algorithm’s cost-based pruning mechanism, QoS
adaptation, and robustness over distributed environments are discussed in our
other publications [8,7].

3 Technical Details

This section focuses on the descriptions of the major components involved in
supporting queries, semantics, and planning. We lead into the discussion of the
technical specifications of each system component through a simple working
example query.

‘‘return water level from station=32125 on 10/31/2008’’

3.1 Query Decomposition

The first objective of our system is to process user queries in the form of natu-
ral language. The job of the Query Decomposition Layer is to extract relevant
elements from the user query. These elements, including the user’s desiderata
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and other query attributes, are mapped to domain concepts specified in the Se-
mantics Layer’s ontology. Thus, these two layers in the system architecture are
tightly linked. Shown in Figure 3, the decomposition process is two-phased.

In the Mapping Phase, StanfordNLP [17] is initially employed to output a list
of terms and a parse tree from the query. The list of extracted query terms is
then filtered through a stop list to remove insignificant terms. This filtered set is
further reduced using a synonym matcher provided through WordNet libraries
[11]. The resulting term set is finally mapped to individual domain concepts from
the ontology. These terms, however, can also take on meaning by their patterns.
In our example, “10/31/2008” should be mapped to the domain concept, date. A
pattern-to-concept matcher, for this reason, was also implemented using regular
expressions. But since only certain patterns can be anticipated, some querying
guidelines must be set. For instance, dates must be specified in the mm/dd/yyyy
format, time as hh:mm:ss, coordinates as (lat, long), etc. Additionally, values
can also be given directly to concepts using a concept=value string, as seen for
assigning 32125 to station in our query.

Upon receiving the set of relevant concepts from the previous phase, the Sub-
stantiation Phase involves identifying the user’s desired concept as well as as-
signing the given values to concepts. First, from the given parse tree, concepts
are merged with their descriptors. In our example, since “water” describes the
term “level”, their respective domain concepts are merged. The pattern matcher
from the previous phase can be reused to substantiate given values to concepts,
resulting in the relations (date derivedFrom 10/31/2008) and (station derived-
From 32125). These query parameter substantiations is stored as a hashset,
Q[. . .] = Q[date] → {10/31/2008} and Q[station] → {32125}. This set of query
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parameters is essential for identifying accurate data sets in the workflow plan-
ning phase. Query parameters and the target concept, are sent as input to the
workflow planning algorithm in the Planning Layer of the system.

We take prudence in discussing our query parser as not to overstate its func-
tionalities. Our parser undoubtedly lacks a wealth of established natural lan-
guage query processing features (see Section 5), for it was implemented ad hoc
for interfacing with our specific domain ontology. We argue that, while related
research in this area can certainly be leveraged, the parser itself is ancillary to
meeting the system’s overall goals of automatic workflow planning and beyond
the current scope of this work. Nonetheless, incorrectly parsed queries should be
dealt with. Currently, with the benefit of the ontology, the system can deduce
the immediate data that users must provide as long as the target concept is
determined. The user can then enter the required data into a form for querying.

3.2 Metadata Registration

Because workflow planning is a necessary overhead, the existence of data sets
(and services) must be identified quickly. Our goal, then, is to provide fast data
identification. On one hand, we have the challenge of supplying useful domain
knowledge to the workflow planner, and on the other, we have a plethora of
pre-existing database/metadata management technologies that can be leveraged.
The result is to utilize an underlying database to store and index domain-specific
elements and, with the advantage of fast indices, the overhead of data identifi-
cation for workflow planning can be optimized. For each data set, its indexed
domain concepts can be drawn from an accompanying metadata file. However,
metadata formats for describing scientific data sets can vary. There exists, for in-
stance, multiple annotation formats from just within the geospatial community.
But while their structures differ, the descriptors are similar, storing essential in-
formation (data quality, dates, spatial coverage, and so on) pertaining to specific
data sets.

Domain experts initialize the system with the following1: (i) Υ = {υ1, . . . , υn},
a set of XML Schema or Data Type Definitions (DTD) which defines the sup-
ported metadata formats used for validation. (ii) Cidx, a set of domain concepts
that the system should index, and (iii) xpath(υ, c) : (υ ∈ Υ ∧ c ∈ Cidx), For
each indexed concept and schema, an XPath query [5] that is used to access the
indexed value for concept c from a given the metadata document corresponding
to schema υ. Once in place, domain users should be able to upload and not
only share new data sets, but to also make it available for answering high-level
queries. To register new data sets with the system, users can invoke the Data
Registration algorithm. This procedure, shown in Algorithm 1, takes three in-
puts: a data file d, its metadata file metad, and an optional keyword array, K[. . .]
that describes d, and an optional schema for validating metad, υd. With the ben-
efit of the term-to-concept mapper described in Section 3.1, the domain concept
to which this data set derives can be computed. Optionally, but not shown, the

1 Our implementation assumes that metadata is defined in XML.
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Algorithm 1. registerData(d, metad[, K, υd])
1: /* identify and validate metadata */
2: if υd ∈ Υ ∧ υd.validate(metad) = true then
3: δ ← υd /* input schema checks out */
4: else
5: for all υ ∈ Υ do
6: if υ.validate(metad) = true then
7: δ ← υ /* δ holds the corresponding schema */
8: end if
9: end for

10: end if
11: cK ← ConceptMapper.map(K) /* solve for concept derived by d */
12: dK ← cK · “type”
13: if � dK ∈ Ontology.D then
14: Ontology.D ← Ontology.D ∪ {dK}
15: Ontology.Edges← Ontology.Edges ∪ {(cK , derivedFrom,dK)}
16: end if
17: /* build database record */
18: R← (datatype = dK)
19: for all c ∈ Cidx do
20: v ← metad.extract(xpath(δ, c))
21: R← record ∪ (c = v) /* concatenate record */
22: end for
23: DB.insert(R, d)

user could select concepts directly from the ontology to describe d’s type instead
of providing K[. . .]. To avoid confusion of schema validity and versioning, we
emphasize here that the set of valid schemas, Υ , should only be managed by do-
main experts or administrators. That is, although users may potentially discover
new metadata schemas, our system cannot allow them to update Υ directly.

Algorithm 1 starts by identifying the type of metadata, δ, prescribed by the
user via validating metad against the set of schemas, or directly against the user
provided schema, υd (Lines 2-10). Next, the domain concept that is represented
by K[. . .] is solved for on Line 11. On Line 12, dK is assigned the name rep-
resenting the type of data in the ontology, where cK is the matched concept
and · denotes string concatenation. If necessary, dK is added into the ontology’s
data type class, D, and an edge from cK to dK is also established (Lines 13-16).
Finally, on Lines 18-23, a record is constructed for eventual insertion into the
underlying database. The constructed record, R, is inserted into the database
with a pointer to the data set, d. This process is illustrated in Figure 4(a).

Service registration, depicted in Figure 4(b), is not unlike data registration.
First, the service description file (in WSDL [6]) is input. Each declared opera-
tion must input domain concepts describing its parameters and output. Again,
the user may input keywords defining the concept or map the concepts directly.
From concept mapping, the ontology is updated with the respective derivedFrom
and inputsFrom edges. Additionally, preconditions and prediction models for
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execution time and output size can also be input in this stage. Preconditions,
useful for workflow planning, and prediction models, required for QoS adapta-
tion, are both indexed per service operation.

3.3 Workflow Planning

Often in practice, scientific tasks are composed of disparate processes chained
together to produce some desired values. Although workflows are rooted in busi-
ness processes, their structures lend well to the realization of complex scientific
computing [10,22,1,19]. Workflows can be expressed as directed acyclic graphs
where the vertices denote processes/services and data sets and directed edges
represent the flow of data. In our framework, we define workflow as follows.
Given some arbitrary dataset D and a set of services S a workflow:

w =

⎧
⎪⎨

⎪⎩

ε

d

(s, Ps)

such that terminals ε and d ∈ D denote a null workflow and a data instance
respectively. Nonterminal (s, Ps) ∈ S is a tuple where s denotes a service op-
eration with an ordered parameter list Ps = (p1, . . . , pk) and each pi is itself a
workflow. In other words, a workflow is a tuple which either contains a single
data instance or a service whose parameters are, recursively, (sub)workflows.

Workflow Enumeration Algorithm. Given some query q, the goal of work-
flow planning algorithm is to enumerate a list of workflows Wq = (w1, . . . , wn)
capable of answering q from the available services and data sets. The execution
of each wi ∈ Wq is carried out, if needed, by an order determined by cost or
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QoS parameters. Thus, upon workflow execution failure, the system can persis-
tently attempt alternative, albeit potentially less optimal (with respect to QoS
parameters), workflows. Mechanisms for assigning cost to workflows against QoS
constraints, however, are out of the scope for this paper.

Domain concept derivation is the goal behind constructing each workflow.
Thus, our algorithm, WFEnum, relies heavily on the metadata and semantics
provided in the Semantics Layer. Recall from Section 3.1 that the Query De-
composition component outputs the query’s target concept, t, and a hashed
set of query parameters, Q[. . .] (such that Q[concept] → {val1, val2, . . .}). The
WFEnum algorithm takes both t and Q[. . .] as input, and outputs a list W of
distinct workflows that are capable of returning the desiderata for the target
concept.

WFEnum, shown in Algorithm 2, begins by retrieving all d ∈ D (types of
data registered in the ontology) from which the target concept, t, can be derived.
On Line 2, a statically accessible array, W ′[. . .], is used for storing overlapping
workflows to save redundant recursive calls in the later half of the algorithm. The
workflows are memoized on a hash value of their target concept and parameter
list. On Line 5, a set of indexed concepts, Cidx, is identified for each data type,
and checked against the parsed user specified values in the query. To perform
this check, if the set difference between the registered concepts, Cidx, and the
query parameters, Q[. . .], is nonempty, then the user clearly did not provide
enough information to plan the workflow unambiguously. On Lines 7-11, if all
index registered concepts are substantiated by elements within Q[. . .], a database
query is designed to retrieve the relevant data sets. For each indexed concept
c, its (concept=value) pair, (c = Q[c]) is concatenated (AND’d) to the query’s
conditional clause. On Lines 12-15, the constructed query is executed and each
returned file record, f , is an independent file-based workflow deriving t.

The latter half of the algorithm deals with concept derivation via service
calls. From the ontology, a set of relevant service operations, Λsrvc is retrieved
for deriving t. For each operation, op, there may exist multiple ways to plan
for its execution because each of its parameters, p , is a subproblem. Therefore,
workflows pertaining to each parameter p must first be solved with its own target
concept, p.target and own subset of relevant query parameters Qp[. . .]. While
p.target is easy to identify from following the inputsFrom links belonging to op
in the ontology, the forwarding of Qp[. . .] requires a bit more effort. Looking
past Lines 25-31 for now, this query parameter forwarding process is discussed
in detail in Section 3.3.

Once the Qp[. . .] is forwarded appropriately, the recursive call can be made
for each parameter, or, if the call is superfluous, the set of workflows can be
retrieved directly (Line 32-36). In either case the results are stored in Wp, and
the combination of these parameter workflows in Wp is established through a
cartesian product of its derived parameters (Line 37). For instance, consider a
service workflow with two parameters of concepts a and b: (op, (a, b)). Assume
that target concepts a is derived using workflows Wa = (wa

1 , wa
2 ) and b can

only be derived with a single workflow Wb = (wb
1). The distinct parameter
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Algorithm 2. WFEnum(t, Q[. . . ])

1: W ← ()
2: global W ′[. . .] /* static table for memoization */
3: Λdata ← Ontology.derivedFrom(D, t)
4: for all d ∈ Λdata do
5: Cidx ← d.getIndexConcepts()
6: /* user-given values enough to substantiate indexed concepts */
7: if (Q.concepts() − Cidx) = {} then
8: cond← (datatype = d)
9: for all c ∈ Cidx do

10: cond← cond ∧ (c = Q[c]) /* concatenate new condition */
11: end for
12: F ← σ<cond>(datasets) /* select files satisfying cond */
13: for all f ∈ F do
14: W ← (W, (f))
15: end for
16: end if
17: end for
18:
19: Λsrvc ← Ontology.derivedFrom(S, t)
20: for all op ∈ Λsrvc do
21: Πop ← op.getPreconditions();
22: Pop ← op.getParameters()
23: Wop ← ()
24: for all p ∈ Pop do
25: /* forward query parameters s.t. preconditions are not violated */
26: Qp[. . .]← Q[. . .]
27: for all (concept, value) ∈ Qp[. . .] do
28: if (concept, value).violates(Πop) then
29: Qp[. . .]← Qp[. . .]− (concept, value)
30: end if
31: end for
32: if ∃W ′[h(p.target,Qp)] then
33: Wp ← W ′[h(p.target,Qp)] /* recursive call is redundant */
34: else
35: Wp ← WFEnum(p.target, Qp[. . . ]) /* recursively invoke for p */
36: end if
37: Wop ←Wop ×Wp /* cartesian product */
38: end for
39: /* couple parameter list with service operation and concatenate to W */
40: for all pm ∈Wop do
41: W ← (W, (op, pm))
42: end for
43: end for
44: W ′[h(t, Qp)]←W /* memoize */
45: return W
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list plans are thus obtained as Wop = Wa × Wb = ((wa
1 , wb

1), (w
a
2 , wb

1)). Each
element from Wop is a unique parameter list. These lists are coupled with the
service operation, op, memoized in W ′ for avoiding redundant recursive calls in
the future, and returned in W (Lines 39-45). In our example, the final list of
workflows is obtained as W = ((op, (wa

1 , wb
1)), (op, (wa

2 , wb
1))).

The returned list, W , contain planned workflows capable of answering an orig-
inal query. Ideally, W should be a queue with the “best” workflows given priority.
Mechanisms identifying the “best” workflows to execute, however, depends on
the user’s preferences. Our previous effort have led to QoS-based cost scoring
techniques leveraging on bi-criteria optimization: workflow execution time and
result accuracy. Although not shown in this paper, the gist of this effort is to
train execution time models and also allow domain experts to input error propa-
gation models per service operation. Our planner, when constructing workflows,
invoke the prediction models based on user criteria. Workflows not meeting ei-
ther constraint are pruned on the a priori principle during the enumeration
phase. In the special case of when W is empty, however, a re-examination of
pruned workflows is conducted to dynamically adapt to meet these constraints
through data reduction techniques. This QoS adaptation scheme is detailed in
other publications [8,7].

Forwarding of Query Parameters. It was previously noted that planning
a service operation is dependent on the initially planning of the operation’s
parameters. This means that WFEnum must be recursively invoked to plan
(sub)workflows for each parameter. Whereas the (sub)target concept is clear to
the system from inputsFrom relations specified in the ontology, the original query
parameters must be forwarded correctly. For instance, consider some service-
based workflow, (op, (L1, L2)) that expects as input two time-sensitive data files:
L1 and L2. Let’s then consider that op makes the following two assumptions: (i)
L1 is obtained at an earlier time/date than L2 and (ii) L1 and L2 both represent
the same spatial region. Now assume that the user query provides two dates,
10/2/2007 and 12/3/2004 and a location (x, y), that is,

Q[. . . ] =

{
location → {(x, y)}
date → {10/2/2007, 12/3/2004}

To facilitate this distribution, the system allows a set of preconditions, Πop,
to be specified per service operation. All conditions from within Πop must be
met before allowing the planning/execution of op to be valid, or the plan being
constructed is otherwise abandoned. In our case, the following preconditions are
necessary to capture the above constraints:

Πop =

{
L1.date � L2.date

L1.location = L2.location

In Lines 25-31, our algorithm forwards the values accordingly down their respec-
tive parameter paths guided by the preconditions, and thus implicitly satisfying
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them. The query parameter sets thus should be distributed differently for the
recursively planning of L1 and L2 as follows:

QL1 [. . .] =

{
location → {(x, y)}
date → {12/3/2004} QL2[. . .] =

{
location → {(x, y)}
date → {10/2/2007}

The recursive planning for each (sub)workflow is respectively supplied with
the reduced set of query parameters to identify only those files adhering to
preconditions.

4 System Evaluation

The experiments that we conducted are geared towards exposing two particular
aspects of our system: (i) we run a case study from the geospatial domain to
display its functionality, including metadata registration, query decomposition,
and workflow planning. (ii) We show scalability and performance results of our
query enumeration algorithm, particularly focusing on data identification.

Experimental Case Study. To present our system from a functional stand-
point, we employ an oft-used workflow example from the geospatial domain:
shoreline extraction. This application requires a Coastal Terrain Model (CTM)
file and water level information at the targeted area and time. CTMs are essen-
tially matrices (from a topographic perspective) where each point represents a
discretized land elevation or bathymetry (underwater depth) value in the cap-
tured coastal region. To derive the shoreline, and intersection between the ef-
fective CTM and a respective water level is computed. Since both CTM and
water level data sets are spatiotemporal, our system must not only identify the
data sets efficiently, but plan service calls and their dependencies accurately and
automatically.

For this example, the system’s data index is configured to include only date
and location concepts. In practice however, it would be useful to index additional
elements such as resolution/quality, creator, map projection, and others. Next,
we provided the system with two metadata schemas, the U.S.-based CSDGM [12]
and the Australia and New Zealand standard, ANZMETA [3], which are both
publicly available. Finally, XPaths formed from the schemas to index concepts
date and location for both schemas are defined.

Next, CTM files, each coupled with corresponding metadata and keywords
K = {“CTM”, “coastal terrain model”, “coastal model”}, are inserted into the
system’s registry using the data registration procedure provided in Algorithm 1.
In the indexing phase, since we are only interested in the spatiotemporal aspects
of the data sets, a single modified Bx-Tree [16] is employed as the underlying
database index for capturing both date and location.2 For the ontology phase,
2 Jensen et al.’s Bx-Tree [16], originally designed for moving objects, is a B+Tree

whose keys are the approximate linearizations of time and space of the object via
space-filling curves.
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Fig. 5. The Shoreline’s Involved Ontology and the Derived Workflow

since a CTM concept is not yet captured in the domain ontology, the keyword-
to-concept mapper will ask the user to either (a) display a list of concepts, or
(b) create a new domain concept mapped from keywords K. If option (a) is
taken, then the user chooses the relevant concept and the incoming data set
is registered into the ontology, and K is included the mapper’s dictionary for
future matches. Subsequent CTM file registrations, when given keywords from
K, will register automatically under the concept CTM. On the service side, two
operations are required for registration, shown below as (op, (cp1, cp2, . . . , cpk)),
where op denotes the service operation name and cpi denotes the domain concept
of parameter i:

1. (getWaterLevel, (date, location)): retrieves the average water level reading
on the given date from a coastal gauging station closest to the given location.

2. (extractShoreline, (CTM, water level)): intersects the given CTM with the
water level and computes the shoreline.

For sake of simplicity, neither operation requires preconditions and cost predic-
tion models. After metadata registration, the resulting ontology is shown in Fig-
ure 5(a), unrolled for clarity. Albeit that there are a multitude of more nodes in
a practical system, it is easy to see how the WFEnum algorithm would plan for
shoreline workflows. By traversing from the targeted concept, shoreline, and visit-
ing all reachable nodes, the workflow structure is a reduction of shoreline’s reacha-
bility subgraph with a reversal of the edges and a removal of intermediate concept
nodes. The abstract workflow shown in Figure 5(b) is the general structure of all
plannable workflows. In this particular example, WFEnum will enumerate more
than one workflow candidate only if multiple CTM files (perhaps of disparate res-
olutions) are registered in the index at the queried location and time.

Performance Evaluation. Our system is distributed by nature, and therefore,
our testbed is structured as follows. The workflow planner, including metadata
indices and the query parser, is deployed onto a Linux machine running a Pentium
4 3.00Ghz Dual Core with 1GB of RAM. The geospatial processes are deployed as
web services on a separate server located across the Ohio State University campus
at the Department of Civil and Environmental Engineering and Geodetic Science.
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Fig. 6. Workflow Planning Times with Increasing Data Sets and Concept Indices

CTM data sets, while indexed on the workflow planner node, are actually housed
on a file server across state, at the Kent State University campus.

In the first experiment, we are interested in the runtime of WFEnum with and
without the benefit of metadata registration when scaled to increasing amounts
of data files and concepts needing indexed (thus resulting in both larger in-
dex structures and a larger number of indices). Shown in Figure 6 (top), the
linear search version consumes significant amounts of time, whereas its coun-
terpart (bottom) consumes mere milliseconds for composing the same workflow
plan. Also, because dealing with multiple concept indices is a linear function,
its integration into linear search produces drastic slowdowns. And although the
slowdown can also be observed for the indexed runtime, they are of negligible
amounts.

Once the shoreline extraction workflow has finished planning, its execution
is then carried out by our system. As seen in Figure 7, the workflow’s execu-
tion time is heavily dependent on the CTM file size. If we juxtaposed Figure 6
with Figure 7, the importance of minimizing planning time becomes clear. Espe-
cially for smaller CTM files, the cases when planning times dominate execution



232 D. Chiu and G. Agrawal

100 200 300 400 500

CTM File Size (MB)

20

40

60

80
W

or
kfl

ow
 E

xe
cu

tio
n 

Ti
m

e 
(s

ec
)

Shoreline Extraction Workflow

Shoreline Query

Fig. 7. Shoreline Workflow Execution Times

times should be avoided, and metadata indexing decreases the likelihood for this
potential.

5 Related Efforts

The need for metadata and semantics has long been addressed by such initia-
tives as the plethora of XML-based technologies, including Resource Description
Framework (RDF) and its complement, the Web Ontology Language (OWL)
[20,9]. These standards have opened up support to allow anyone to specify hu-
man and machine interpretable descriptions for any type of data. In our system,
we indeed employ RDF+OWL to formalize a general ontology which describes
the relationships between concepts and resources (data sets and services). This
resource description is imperative to our system, as it semantically drives the
workflow planner.

Parsing correctness, disambiguation, and schema mapping are well-known
problems in natural language querying. Stanford’s Natural Language Parser [17]
and dictionary API’s provided by WordNet [11] are often employed in systems
providing natural language support, including our own. In the direction of query-
ing structured information, ample research has been developed for addressing the
issues with translating natural language translation to structured queries [2,18].
We concede that our parser is lacking such relevant technologies for handling
the age-old challenges of disambiguation, mapping, etc. Undertaking the imple-
mentation of these features is currently beyond the scope of this work.

Research in high performance scientific data management has produced such
systems as the Scientific Data Manager (SDM), which employs the Meta-data
Management System (MDMS) [21]. SDM provides a programming model and ab-
stracts low-level parallel I/O operations for complex scientific processing. While
MDMS uses a database for metadata storage, the metadata itself is specific to
the scientific process at hand, containing information on execution (e.g., access



Enabling Ad Hoc Queries over Low-Level Scientific Data Sets 233

patterns, problem size, data types, file offsets, etc). This metadata is used by
SDM to optimize the runtime of these parallel processes. Another system, San
Diego Supercomputing Center’s Storage Resource Broker (SRB) [4], seeks to
store massive volumes of data sets split across clusters or nodes within heteroge-
nous environments. SRB allows parallel and transparent data access by offering
a simplified API to users which hides complexities such as merging data sets,
allowing restricted access, etc. Compared to our system, there is a fundamental
difference in functionality. Ours provides a way to store heterogeneous meta-
data specific to scientific domains inside a database, and that the metadata are
invoked not for process optimization, but for data identification purposes for
automatic workflow planning.

Ways to handle the heterogeneity of metadata have prompted many works on
metadata cataloguing and management. Particularly, in the volatile grid com-
puting environment, data sources are abundant and metadata sources are ever-
changing. Metadata Catalog Service (MCS) [26] and Artemis [28] are collab-
orative components used to access and query repositories based on metadata
attributes. MCS is a self-sufficient catalog which stores information on data
sets. Its counterpart Artemis, on the other hand, can be used to integrate many
versions of MCS for answering interactive queries. Their interface takes users
through a list of questions guided by a domain ontology to formulate a query.
The planned query is then sent to the Artemis mediator to search for relevant
items in the MCS instances. While the MCS and Artemis is somewhat tanta-
mount to our metadata registration and automatic query formulation processes,
our systems differ in the following ways. (i) Ours not only facilitates accurate
data identification based on metadata querying, but also combining these data
items with similarly registered services to compose workflows. (ii) Although both
systems allow higher level querying frameworks, our approach is enabled through
natural language and keyword mapping of domain ontology concepts.

Workflow management systems have also gained momentum in the wake of
managing complex, user-driven, scientific computations in the form of service
composition. By itself, service composition have become prevalent enough to
warrant such industrial standards as the WSBPEL (Web Service Business Pro-
cess Execution Language) [30] to describe the orchestration of service execu-
tion. Implementations of WSBPEL engines have already sprawled into realms of
proprietary and open-source communities, an auspicious indication of the high
optimism for the movement toward service-oriented workflow solutions. In fact,
many efforts towards scientific workflow composition have already been devel-
oped. Notable systems such as Askalon [29], Taverna [22], and Kepler [1] have
evolved into grid- and service-oriented systems. These systems typically allow
domain experts to define static workflows through a user-friendly interface, and
map the component processes to known services. Pegasus [10,15] allows users to
compose workflows potentially with thousands of nodes using abstract workflow
templates. But while these systems alleviate users’ efforts for composition, our
system proposes automatic workflow planning based on available metadata to
elude user-based composition altogether.
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In the direction of automatic workflow composition, Traverso et al. discussed
the importance of exploiting semantic and ontological information for automat-
ing service composition [27]. Their approach generates automata-based “plans,”
which can then be translated into WSBPEL processes. The goals and require-
ments for these plans, however, must be expressed in a formal language, which
may be cryptic for the average user. Other automatic planning-based systems,
such as Sword [23] and SHOP2 [31], also require similar complexity in expressing
workflows. While the overall objectives of these systems are tantamount to those
of our own, our directions are quite different. In an age when scientific data sets
are ubiquitous and when machine- and human-interpretable descriptions are im-
perative, we are invariably deluged with high-volumes of heterogeneous data sets
and metadata. To the best of our knowledge, the registration and exploitation
of domain-specific metadata to automatically compose workflows for answering
natural language queries is a novel approach in this area.

6 Conclusion and Future Work

In this paper we have presented a system which supports simplified querying
over low-level scientific datasets. This process is enabled through a combination
of effective indexing over metadata information, a system and domain specific
ontology, and a workflow planning algorithm capable of alleviating all tiers of
users of the difficulties one may experience through dealing with the complexities
of scientific data. Our system presents a new direction for users, from novice
to expert, to share data sets and services. The metadata, which comes coupled
with scientific data sets, is indexed by our system and exploited to automatically
compose workflows in answering high level queries without the need for common
users to understand complex domain semantics.

As evidenced by our experiments, a case can be made for supporting metadata
registration and indexing in an automatic workflow management system. In our
case study alone, comparing the overhead of workflow planning between linear
search and index-based data identification methods, speedups are easily observed
even for small numbers of data sets. Further, on the medium scale of searching
through 1× 106 data sets, it clearly becomes counterproductive to rely on linear
metadata search methods, as it potentially takes longer to plan workflows than
to execute them. As evidenced, this scalability issue is easily mitigated with an
indexed approach, whose planning time remains negligible for the evaluated sizes
of data sets.

Although our system claims to support natural language queries, it is, admit-
tedly, far from complete. For instance, mapping sophisticated query elements to
supporting range queries and joins is lacking. While this limits querying support
significantly, we believe that these details can be realized with more effort spent
on providing better models in the relationship between parse trees and the query
plan. Nonetheless, in a more holistic sense, these nuances are diminutive against
the general role of the system.
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