
Elastic Cloud Caches for Accelerating
Service-Oriented Computations

David Chiu† Apeksha Shetty Gagan Agrawal
† School of Engineering and Computer Science, Washington State University, Vancouver

Department of Computer Science and Engineering, The Ohio State University

Abstract—Computing as a utility, that is, on-demand access to
computing and storage infrastructure, has emerged in the form of
the Cloud. In this model of computing, elastic resource allocation,
i.e., the ability to scale resource allocation for specific applications,
should be optimized to manage cost versus performance. Meanwhile,
the wake of the information sharing/mining age is invoking a
pervasive sharing of Web services and data sets in the Cloud, and at
the same time, many data-intensive scientific applications are being
expressed as these services. In this paper, we explore an approach to
accelerate service processing in a Cloud setting. We have developed a
cooperative scheme for caching data output from services for reuse.
We propose algorithms for scaling our cache system up during peak
querying times, and back down to save costs. Using the Amazon
EC2 public Cloud, a detailed evaluation of our system has been
performed, considering speed up and elastic scalability in terms
resource allocation and relaxation.

I. INTRODUCTION

The diminishing cost of bandwidth, storage, and processing
elements, together with advancements in virtualization technol-
ogy, have allowed for the subsistence of computing as a utility.
This utility computing model, the Cloud, ventures to offer users
on-demand access to ostensibly unlimited computing and storage
infrastructure. This model has proved to be highly desirable for
various stakeholders within the industry and the academe, as their
localized data centers can now be outsourced to the Cloud to save
on such costs as personnel, maintenance, and resource usage [3].
Providers, including (but certainly not limited to) Amazon AWS
[1], Microsoft [34], and Google [23] have already made great
strides towards ushering Cloud computing to the mainstream.

Particularly, scientific application users have begun harnessing
the Cloud’s elastic properties, i.e., on-demand allocation and
relaxation of storage and compute resources [50], [14], [42].
Additionally, such applications have lately embraced the Web
service paradigm [12] for processing and communications within
distributed computing environments. Among various reasons,
the interoperability and sharing/discovery capabilities are chief
objectives for their adoption. Indeed, the Globus Toolkit [17] has
been employed to support service-oriented science for a number
of years [18]. These observations certainly do not elude scientific
Cloud applications – indeed, some speculate that Clouds will
eventually host a multitude of services, shared by various parties,
that can be strung together like building-blocks to generate larger,
more meaningful applications in processes known as service
composition, mashups, and service workflows [22].

∗∗∗ This work is dedicated to Yuri Breitbart (1940—2010), Ohio Board
of Regents (OBR) Distinguished Professor at Kent State University, who will
always be remembered for his wisdom, empathy, and unwavering guidance of his
students.

Situations within certain composite service applications often
invoke high numbers of requests due to heightened interest
from various users. In a recent, real-world example of this so-
called query-intensive phenomenon, the catastrophic earthquake
in Haiti generated massive amounts of concern and activity from
the general public. This abrupt rise in interest prompted the
development of several Web services in response, offering on-
demand geotagged maps [16] of the disaster area to help guide
relief efforts. Similarly, efforts were initiated to collect real-time
images of the area, which are then composed together piecemeal
by services in order to capture more holistic views. But due to
their popularity, the availability of such services becomes an issue
during this critical time.

However, because service requests during these situations are
often related, e.g., displaying a traffic map of a certain populated
area in Port-au-Prince, a considerable amount of redundancy
among these services can be exploited. Consequently, their de-
rived results can be reused to not only accelerate subsequent
queries, but also to help reduce service traffic. Conversely, if the
data is cached, but left unused, it would likely incur storage costs
that will not be offset by savings on processing costs. As demand
for derived data can change over time, it is important to exploit
the elasticity of Cloud environments and dynamically provision
storage resources.

In this paper, we describe an approach to cache and utilize
service-derived results. We implement a cooperative caching
framework for storing the services’ output data in-memory for
facilitating fast accesses. Our system has been designed to auto-
matically scale, and relax, elastic compute resources as needed.
We should note that automatic scaling services exist on most
Clouds. For instance, Amazon AWS allows users to assign certain
rules, e.g., scale up by one node if the average CPU usage is
above 80%. But while auto-scalers are suitable for Map-Reduce
applications [15], among other easily parallelizable applications,
in cases where much more distributed coordination is required,
elasticity does not directly translate to scalability. Such is the
case for our proposed cache, and we have designed and evaluated
specific scaling logic for our system. In the direction of the cost-
incentivized down-scaling, a decay-based cache eviction scheme
is implemented for node deallocation. Depending upon the nature
of data and services, security and authentication can be important
concerns in a system of this nature [22]. Our work targets
scenarios where all data and services are shared among users
of that particular Cloud environment, and these issues are thus
not considered here.

Using a real service to represent our workload, we have
evaluated many aspects of the cache extensively over the Amazon

c©2010 IEEE Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained
from the IEEE.
SC10 November 2010, New Orleans, Louisiana, USA 978-1- 4244-7558-2/10/$26.00

EC2 public Cloud. In terms of utilization, the effects of the cache
over our dynamic compute node allocation framework has been
compared with static, fixed-node models. We also evaluate our
system’s resource allocation behavior. Overall, we are able to
show that our cache is capable obtaining minimal miss rates while
utilizing far less nodes than statically allocated systems of fixed
sizes in the span of the experiment. Finally, we run well-designed
experiments to show our cache’s capacity for full elasticity — its
ability to scale up, and down, amidst varying workloads over
time.

The high-level contributions of this work are as follows. Our
cache was originally proposed to speed up computations in our
scientific workflow system, Auspice [10], [11]. Thus, the cache’s
API has been designed to allow for transparent integration with
Auspice, and other such systems, to compose derived results
directly into workflow plans. Our system is thus easily adaptable
to many types of applications that can benefit from data reuse. We
are furthermore considering cooperative caching in the context
of Clouds, where resource allocation and deallocation should be
coordinated to harness elasticity. To this end, we implement a
sliding window view to capture user interest over time.

The remainder of this paper is organized as follows. In the
Section II, we present the background and goals for our cache
framework. In Section III, we formalize the structures and meth-
ods involved for our system’s operation. Experimental results
are discussed in Section IV. We identify some related works in
Section V and finally conclude in Section VI.

II. SYSTEM GOALS AND DESIGN

In this section, we identify several goals and requirements
for our system, and we also discuss some design decisions to
implement our data cache.

Provisioning Fast Access Methods:
The ability to store large quantities of precomputed data is

hardly useful without efficient access. This includes not only
identifying which cooperating cache node contains the data,
but also facilitating fast hits and misses within that node. The
former goal could be achieved through such methods as hashing
or directory services, and the latter requires some considerations
toward indexing. Although the index structure is application
dependent, we utilize well-supported spatial indices [26], [24]
due to the wide range of applications that they can accommodate
and also their de facto acceptance into most practical database
systems. This implies an ease of portability, which relates to the
next goal.

Transparency and High-Level Integration with Existing Systems:
Our cache must subscribe to an intuitive programming

interface that allows for nonintrusive integration into existing
systems. Like most caches, ours should only present high-level
search and update methods while hiding internal nuances from
the programmer. These details might include victimization
schemes, replacement policies, management of underlying
compute resources, data movement, etc. In other words, our
system can be viewed as a Cloud service, from the application
developer’s perspective, for indexing, caching, and reusing
precomputed results.

Graceful Adaptation to Varying Workloads:
An increase in service request frequency implies a growing

amount of data that must be cached. Taking into consideration the
dimensionality of certain data sets, it is easy to predict that caches
can quickly grow to sizes beyond main memory as query intensive
situations arise. In-core containment of the index, however, is
imperative for facilitating fast response times in cache systems.
The elastic resource allocation afforded by the Cloud is important
here; in these cases, our system should also increase its available
main memory to guarantee in-core access. Similarly, a decrease
in request frequency should invoke a contraction of currently
allocated resources.

A. Design Decisions

First, our cache has been designed under a cooperative scheme,
where cache nodes are distributed over the Cloud, and each node
stores only a portion of the entire cache. Upon a cache overflow,
our system splits the overflown node and migrates its data either
to a new allocated Cloud node, or an existing cooperating node.
Similarly, our cache should understand when to relax and merge
compute nodes to save costs. This approach is somewhat akin to
distributed hashtables (DHT) and web proxies, but we state the
distinctions in Section V.

Each node in our system employs a variant of B+-Trees [6]
to index cached data due to its familiar and pervasive nature.
Because B+-Trees are widely accepted in today’s database
systems, its integration is simplified. Due to this fact, many
approaches have been proposed in the past to extend B+-Trees to
various application domains, which makes it extremely portable.
Because our specific application involves spatiotemporal data
sets, we utilize Bx-Trees [26] to index cached data. These
structures modify B+-Trees to store spatiotemporal data through
a linearization of time and location using space-filling curves,
and thus, individual one-dimensional keys of the B+-Tree can
represent spatiotemporality.

Another design decision addresses the need to handle changes
in the cache’s underlying compute structure. The B+-Tree index
previously discussed is installed on each cache server in the
cooperating system. However, as we explained earlier, due to
memory overflow/underflow, the system may have to dynami-
cally expand/contract. Adding and removing cache nodes should
take minimal effort, which is a deceptively hard problem. To
illustrate, consider an n node cooperative cache system, and
each node is assigned a distinct id: 0, . . . , n − 1. Identifying
the node responsible for caching some data identified by key,
k, is trivial with static hashing, i.e., h(k) = (k mod n) can be
computed as node id. Now assume that a new node is allocated,
which effectively modifies the hash function to h(k) = (k
mod n+1). This ostensibly simple change forces most currently
keyed records to be rehashed and, worse, relocated using the new
hash. Rehashing and migrating large volumes of records after
each node acquisition is, without saying, prohibitive.

To handle this problem, also referred to as hash disruption [36],
we implement consistent hashing [29]. In this hashing method, we
first assume an auxiliary hash function, e.g., h′(k) = (k mod r),
for some fixed r. Within this range exists a sequence of p buckets,
B = (b1, . . . , bp), with each bucket mapped to a single cache

node. Figure 1 (top) represents a framework consisting two nodes
and five buckets. When a new key, k, arrives, it is first hashed via
the auxiliary hash h′(k) and then assigned to the node referenced
by h(k)’s closest upper bucket. In our figure, the incoming k is
assigned to node n2 via b4. Often, the hash line is implemented
in a circular fashion, i.e., a key k | b5 < h′(k) ≤ r− 1 would be
mapped to n1 via b1.

0 r - 1

b1 b2 b3 b4 b5

h' (k) = (k mod r)

0 r

b1 b2 b3 b4 b5b6

r/2

(top)

(bottom)

h(k)

r - 1

n1 n2

n1 n2 n3

Fig. 1. Consistent Hashing Example

Because the hash map is fixed, consistent hashing reduces hash
disruption by a considerable factor. For instance, let us consider
Figure 1 (bottom), where a new node, n3, has been acquired
and assigned by some bucket b6 = r/2 to help share the load
between b3 and b4. The introduction of n3 would only cause a
small subset of keys to be migrated, i.e., k | b3 < h′(k) ≤ b6
(area within the shaded region) from n2 to n3 in lieu of a rehash
of all records. Thus, we can implement the task of supporting
elastic Cloud structures without hash disruption.

III. CACHE DESIGN AND ACCESS

Before presenting cache access methods, we first state the
following definitions. Let N = {n1, . . . , nm} denote the cur-
rently allocated cache nodes. We define ||n|| and dne to be the
current space used and capacity respectively on cache node n.
We further define the ordered sequence of allocated buckets as
B = (b1, . . . , bp) such that bi ∈ [0, r) and bi < bi+1. Given an
auxiliary, fixed hash function, h′(k) = (k mod r), in a circular
implementation, our hash function is defined,

h(k) =

b1, if h′(k) > bp

argmin
bi∈B

bi − h′(k) : bi ≥ h′(k), otherwise

For reading comprehension, we have provided a summary of
identifiers in Table I. We can now focus on our proposed
algorithms for cache access, migration, and contraction over the
Cloud. Note that we will not discuss the cache search method, as
it is trivial, i.e., by running a B+-Tree search for k on the node
referenced by h(k).

TABLE I
LISTING OF IDENTIFIERS

Identifier Description

k A queried key
B = (b1, . . . , bp) The list of all buckets on the hash line

N The set of all nodes in the cooperative cache
n ∈ N A cache node
||n|| Current size of index on node n
dne Overall capacity on node n

T = (t1, . . . , tm) Sliding window of size m
ti ∈ T A single time slice in the sliding window, which

records all keys that were queried in that period
of time

α The decay, 0 < α < 1, used in the calculation
of λ(k)

λ(k) Key k’s likelihood of being evicted
Tλ Eviction threshold, i.e., k | λ(k) < Tλ are

designated for eviction

A. Insertion and Migration

The procedure for inserting into the cache could invoke migra-
tion, which complicates the otherwise simple insertion scheme. In
Algorithm 1, the insert algorithm is defined with a pair of inputs,
k and v, denoting the key and value object respectively. The
Greedy Bucket Allocation (GBA) Insert algorithm is so named
as to reflect that, upon node overflows, we greedily consider
preexisting cache nodes as the data migration destination. In other
words, node allocation is a last-resort option to save cost.

Algorithm 1 GBA-insert(k, v)
1: static NodeMap[. . .]
2: static B = (. . .)
3: static h′ : K → [0, r)
4: n← NodeMap[h′(k)]
5: if ||n||+ sizeof(v) < dne then
6: n.insert(k, v) . insert directly on node n
7: else
8: . n overflows
9: . find fullest bucket referencing n

10: bmax ← argmax
bi∈B

||bi|| ∧NodeMap[bi] = n

11: kµ ← µ(bmax)
12: ndest ← n.sweep-migrate(min(bmax), kµ)
13: . update structures
14: B ← (b1, . . . , bi, h

′(kµ), bi+1, . . . , bp) | bi < h′(kµ) < bi+1

15: NodeMap[h′(kµ))]← ndest
16: GBA-insert(k, v)
17: end if

On Line 1, the statically declared inverse hash map is brought
into scope. This structure defines the relation NodeMap[b] = n
where n is the node mapped to bucket value b. The ordered list
of buckets, B, as well as the auxiliary consistent hash function,
h′, are also brought into scope (Lines 2-3). After identifying k’s
bucket and node (Line 4), the (k, v) pair is inserted into node n if
the system determines that its insertion would not cause a memory
overflow on n (Lines 5-6). Since cache indices expanding into
disk memory would become prohibitively slow, when an overflow
is detected, migration of portions of the index must be invoked
to make space (Line 7).

The goal of migration is to introduce a new bucket into the
overflown interval that would reduce the load of about half of

the keys from the overflown bucket. However, the fullest bucket
may not necessarily be b. On (Line 10), we identify the fullest
bucket which references n, then invoke the migration algorithm
on a range of keys, to be described shortly (Line 11-12). As a
simple heuristic, we opt to move approximately half the keys
from bucket bmax, starting from the lowest key to the median,
kµ. The sweep-and-migrate algorithm returns a reference to the
node (either preexisting or newly allocated), ndest, to which the
data from n has been migrated. On (Lines 13-15), the buckets, B,
and node mapping data structures, NodeMap[. . .], are updated
to reflect internal structural changes. Specifically, a new bucket
is created at h′(kµ) and it references ndest. The algorithm is
finally invoked recursively to attempt proper insertion under the
modified cache structure.

The Sweep-and-Migrate function, shown in Algorithm 2, re-
sides on each individual cache server, along with the indexing
logic. As an aside, in our implementation, the cache server is
automatically fetched from a remote location on the startup of a
new Cloud instance. The algorithm inputs the range of keys to be
migrated, kstart and kend. The least loaded node is first identified
from the current cache configuration (Line 1). If it is projected
that the key range cannot fit within ndest, then a new node must
be allocated from the Cloud (Lines 2-5). The aggregation test
(Line 2) can be done by maintaining an internal structure on the
server which holds the keys’ respective object size.

Once the destination node has been identified we begin the
transfer of the key range. We now describe the approach to
find and sweep all keys in the specified range from the internal
B+-Tree index. The B+-Tree’s linked leaf structure simplifies the
record sweep portion of our algorithm. First, a search for kstart
is invoked to locate its leaf node (Line 9). Then, recalling that
leaf nodes are arranged as a key-sorted linked list in B+-Trees, a
sweep (Line 10-22) on the leaf level is performed until kend has
been reached. For each leaf visited, we transfer all associated
(k, v) record to ndest.

Algorithm 2 sweep-migrate(kstart, kend)
1: ndest ← argmin

ni∈N
||ni||

2: . stolen keys and values will overflow ndest
3: if ||ndest||+

∑kend
k=kstart

sizeof(k, v) > dndeste then
4: ndest ← nodeAlloc()
5: end if
6: . manipulate B+-Tree index and transfer to ndest
7: end← false
8: . L = leaf initially containing kstart
9: L← btree.search(kstart)

10: while (¬end ∧ L 6= NULL) do
11: . each leaf node contains multiple keys
12: for all (k, v) ∈ L do
13: if k ≤ kend then
14: ndest.insert(k, v)
15: btree.delete(k)
16: else
17: end← true
18: break
19: end if
20: end for
21: L← L.next()
22: end while
23: return ndest

Analysis of GBA-Insert
GBA-insert is difficult to generalize due to variabilities of the

system state, which can drastically affect the runtime behavior of
migration, e.g., number of buckets, migrated keys, size of each
object, etc. To be succinct in our analysis, we make the simple
assumption that sizeof((k, v)) = 1 to normalize cached records.
This simplification also allows us to imply an even distribution
over all buckets in B and nodes in N . In the following, we only
consider the worst case.

We begin with the analysis of sweep-and-migrate (Algorithm
2), whose time complexity is denoted Tmigrate. First, the max-
imum number of keys that can be stolen from any node is half
of the record capacity of any node: dne/2. This is again due
to our assumption of an even bucket/node distribution, which
would cause Algorithm 1’s calculation of min(bmax) and kµ

to be assigned such that min(bmax) − kµ ≈ dne/2, and thus
the sweep phase can be analyzed as having an O(log2 ||n||)-time
B+-Tree search followed by a linear sweep of dne/2 records,
i.e.,

log2 ||n||+ dne/2

The complexity of Tmigrate, then, is the sum of the above sweep
time and the time taken to move the worst case number of records
to another node. If we let Tnet denote the time taken to move
one record,

Tmigrate = log2 ||n||+ dne/2(Tnet + 1)

We are now ready to solve for TGBA, the runtime of Algorithm
1. As noted previously, h(k) can be implemented using binary
search on B – the ordered sequence of p buckets, i.e., T (h(k)) =
O(log2 p). After the initial hash function is invoked, the algorithm
enters the following cases: (i) the record is inserted trivially, or
(ii) a call to migrate is made before trivially inserting the record
(which requires a subsequent hash call). That is,

TGBA =

{
log2 p, if ||n||+ 1 < dne
2 log2 p+ Tmigrate, otherwise

Finally, after substitution and worst case binding, we arrive at the
following conditional complexity due to the expected dominance
of record transfer time, Tnet,

TGBA =

{
O(1), if ||n||+ 1 < dne
O((dne/2)Tnet), otherwise

Although Tnet is neither uniform nor trivial in practice, our
analysis is sound as actual record sizes would likely increase Tnet.
But despite the variations on Tnet, the bound for the latter case
of TGBA remains consistent due to the significant contribution of
data transfer times.

B. Cache Eviction

Consider the situation when some interesting
event/phenomenon causes a barrage of queries in a very
short amount of time. Up till now, we have discussed methods
for scaling our cache system up to meet the demands of these
query-intensive circumstances. However, this demanding period
may abate over time, and the resources provisioned by our
system often become superfluous. In traditional distributed (e.g.,

cluster and grid) environments, this was less of an issue. For
instance, in advance reservation schemes, resources are reserved
for some fixed amount of time, and there is little incentive to
scale back down. In contrast, the Cloud’s usage costs prompts
an important motivation to scale our system down.

. . .

time

eviction

queries

now

tm−1tm t2 t1tm+1

Fig. 2. Sliding Window of the Most Recently Queried Keys

We implement a cache contraction scheme to merge nodes
when query intensities are lowered. Our scheme is based on a
combination of exponential decay and a temporal sliding window.
Because the size of our cache system (number of nodes) is highly
dependent on the frequency of queries during some timespan, we
propose a global cache eviction scheme that captures querying
behavior. In our contraction scheme, we employ a streaming
model, where incoming query requests represent streaming data,
and a global view of the most recently queried keys is maintained
in a sliding window. Shown in Figure 2, our sliding window,
T = (t1, . . . , tm), comprises m time slices of some fixed real-
time length. Each time slice, ti, associates a set of keys queried
in the duration of that slice. We argue that, as time passes, older
unreferenced keys (i.e., those in the lighter shaded region, ti
nearing tm) should have a lower probability of existing in the
cache. As these less relevant keys become evicted, the system
makes room for newer, incoming keys (i.e., those in the darker
shaded region, ti nearing t1) and thus capturing temporal locality
of the queries.

Cache eviction occurs when a time slice has reached tm+1,
and at this time, an eviction score,

λ(k) =

m∑
i=1

αi−1|{k ∈ ti}|

is computed for every key, k, within the expired slice. The ratio,
α : 0 < α < 1, is a decay factor, and |{k ∈ ti}| returns the
number of times k appears in some slice ti. Here, α is passive in
the sense that a higher value corresponds to a larger amount of
keys that is kept in the system. After λ has been computed for
each key in tm+1, any key whose λ falls below the threshold, Tλ,
is evicted from the system. Notice that α is amortized in the older
time slices, in other words, recent queries for k are rewarded, so
k is less likely to be evicted. Clearly, the sliding window eviction
method is sensitive to the values of α and m. A baseline value
for Tλ would be αm−1, which will not allow the system to evict
any key if it was queried even just once in the span of the sliding
window. We will show their effects in the experimental section.

Due to the eviction strategy, a set of cache nodes may
eventually become lightly loaded, which is an opportunity to
scale our system down. The nodes’ indices can be merged, and
subsequently, the superfluous node instances can be discarded.
When a time slice expires, our system invokes a simple heuristic

for contraction. Our system monitors the memory capacity on
each node. After each interval of ε slice expirations, we identify
the two least loaded nodes and check whether merging their
data would cause an overflow. If not, then their data is migrated
using methods tantamount to Algorithm 2.

Analysis of Eviction and Contraction
The contraction time is the sum of eviction time and node

merge time, Tcontract = Tevict+Tmerge. To analyze merge time,
we first note that it takes O(1) time to identify the two least
loaded nodes, as we can dynamically maintain a list of nodes
sorted by capacity. If the data merge is cannot be performed, the
algorithm simply halts. On the other hand, it executes a slight
variant of the Sweep-and-Migrate algorithm to move the index
from one node to another, which, combined with our previous
analysis of Tmigrate, is ||nmin||(Tnet + 1) where ||nmin|| is the
size of the migrated index. If we ignore the best case O(1) time
expended when contraction is infeasible, then the time taken by
Tmerge can be summarized as follows,

Tmerge = ||nmin||(Tnet + 1)

The contraction method is invoked every ε time slices’ expiration
from the sliding window. By itself, the sliding window’s slice
eviction method, Tevict can be summarized by Tevict = mK
where m is the size of the sliding window, and K = |{k ∈
tm+1}| is the total number of keys in the evicted time slice,
tm+1. However, since Tevict again pales against network traffic
time, Tnet, its contribution can be assumed trivial. Together, the
overall eviction and contraction method can be bound Tcontract =
O(||nmin||Tnet).

IV. EXPERIMENTAL RESULTS

In this section, we discuss the evaluation of our derived data
cache system. We employ the Amazon Elastic Compute Cloud
(EC2) to support all of our experiments.

A. Experimental Setup

Each Cloud node instance runs an Ubuntu Linux image on
which our cache server logic is installed. Each image runs on a
Small EC2 Instance, which, according to Amazon, comprises 1.7
GB of memory, 1 virtual core (equivalent to a 1.0-1.2 GHz 2007
Opteron or 2007 Xeon processor) on a 32-bit platform. In all of
our experiments, the caches are initially cold, and both index and
data are stored in memory.

As a representative workload, we executed repeated runs of a
Shoreline Extraction query. This is a real application, provided
to us by our colleagues in the Department of Civil and Envi-
ronmental Engineering and Geodetic Science here at Ohio State
University. Given pair of inputs: location, L, and time of interest,
T , this service first retrieves a local copy of the Coastal Terrain
Model (CTM) file with respect to (L, T). To enable this search,
each file has been indexed via their spatiotemporal metadata.
CTMs contain a large matrix of a coastal area where each point
denotes a depth/elevation reading. Next, the service retrieves
actual water level readings, and finally given the CTM and water
level, the coast line is interpolated and returned. The baseline
execution time of this service, i.e., when executed without any

caching, typically takes approximately 23 seconds to complete,
and the derived shoreline result is < 1kb.

We have randomized inputs over 64K possibilities for each
service request, which emulates the worst case for possible reuse.
The 64K input keys represent linearized coordinates and date (we
used the method described in Bx-Trees [26]). The queries are
first sent to a coordinating compute node, and the underlying
cooperating cache is then searched on the input key to find a
replica of the precomputed results. Upon a hit, the results are
transmitted directly back to the caller, whereas a miss would
prompt the coordinator to invoke the shoreline extraction service.

In the following experiments, in order to regulate the integrity
in querying rates, we submitted queries with the following loop:

for time step i← 1 to . . . do
R← current query rate(i)
for j ← 1 to R do

invoke shoreline service(rand coordinates())
end for

end for

Specifically, we invoke R queries per time step, and thus each
time step does not reflect real time. Note that the granularity of a
time step in practice, e.g., t seconds, minutes, or hours, does not
affect the overall hit/miss rates of the cache. At each time step,
we observed and recorded the average service execution time (in
number of seconds real time), the number of times a query reuses
a cached record (i.e., hits), and the number of cache misses.

B. Evaluating Cache Benefits

The initial experiment evaluates the effects of the cache without
node contraction. In other words, the length of our eviction
sliding window is ∞. Under this configuration, our cache is able
to grow as large as it needs to handle the size of the cache.
We run our cache system over static, fixed-node configurations
(static-2, static-4, static-8), comparable to current cluster/grid
environments, where the amounts of nodes one can allocate is
typically fixed. The fixed-node settings subscribe to the simple
LRU eviction policy. We compare these static versions against
our approach, Greedy Bucket Allocation (GBA), which runs over
the EC2 public Cloud. For these experiments, we submitted one
query per time step, i.e., the query submission loop is configured
R = 1 over 2× 105 time steps.

We executed the shoreline service repeatedly with varying in-
puts. Figure 3, which shows the respective relative speedups over
the query’s actual execution time. We observed and plotted the
speedup for every I = 25000 queries elapsed in our experiment.
Expectedly, the speedup provided by the static versions flatten
somewhat quickly, again due to the nodes reaching capacity. The
relative speedups converge at 1.15× for static-2, 1.34× for static-
4, and 2× for static-8. GBA, on the other hand, was capable of
achieving a relative speedup of over 15.2×. Note that the speedup
in Figure 3 is shown in log10-scale.

The node allocation behavior (shown against the right y-axis)
shows that GBA allocates 15 nodes in the end of the experiment.
But since allocation was only invoked as a last resort on-demand
option, d12.6e = 13 nodes were utilized, if averaged over the
lifespan of this experiment. This translates to less overall EC2

0 50000 100000 150000 200000

Queries Submitted

1

10

R
el

at
iv

e
Sp

ee
du

p

0

2

4

6

8

10

12

14

16

G
BA N

odes Allocated

GBA Nodes
GBA
static-2
static-4
static-8

Fig. 3. Speedups Relative to Original Service Execution

0 50000 100000 150000 200000

Queries Submitted

0

50

100

150

200

250

300

D
at

a
M

ig
ra

tio
n

Ti
m

e
(s

ec
)

0

2

4

6

8

10

12

14

16

G
BA N

odes AllocatedGBA Nodes
Migration Time

Fig. 4. GBA Migration Times

usage cost per performance over static allocations. The growth of
nodes is also not unexpected, though, at first glance it appears to
be exponential. Early into the experiment, the cooperating cache’s
overall capacity is initially too small to handle the query rate, until
stabilizing after ∼ 75000 queries have been processed.

Next, we summarize in Figure 4 the overhead of node splitting
(upon cache overflows) as the sum of node allocation and data
migration times for GBA. It is clear from this figure that this
overhead can be quite large. Although not shown directly in the
figure, we note it is the node allocation time, and not the data
movement time, which is the main contributor to this overhead.
However, these penalties are amortized because node allocation is
seldom invoked. We also posit that the demand for node allocation
diminishes as the experiment proceeds even with high querying
rates due to system stabilization. Moreover, techniques, such as
asynchronous preloading of EC2 instances and replication, can
also be used to further minimize this overhead, although these
have not been considered in this paper.

C. Evaluating Cache Eviction and Contraction

Next, we evaluate our eviction and contraction scheme. Two
separate experiments were devised to show the effects of the
sliding window and to show that our cache is capable of relaxing
resources when feasible. We randomize the query inputs points
over 32K possibilities, and we generated a workload to simulate
a query intensive situation, such as the one described in the
introduction in the following manner. Recall, from the query
submission loop we stated early in this section, that a time step
denotes an iteration where R queries are submitted. Specifically,
in the following experiments, for the first 100 time steps, the
querying rate is fixed at R = 50 queries/time step. From 101
to 300 time steps, we enter an intensive period of R = 250
queries/time step to simulate heightened interest. Finally, from
400 time steps onward, the query rate reduced back down to
R = 50 queries/time step to simulate waning interest.

We show the relative speedup for varying sliding window sizes
of m = 50 time steps, m = 100 time steps, m = 200 time
steps, and m = 400 time steps in Figures 5(a), 5(b), 5(c), and
5(d) respectively. Recall that the sliding window will attempt to
maintain, with high probability, all records that were queried in
the m most recent time steps. To ensure this probability, the decay
has been fixed at α = 0.99 for these experiments, and the eviction
threshold is set at the baseline Tλ = αm−1 ≈ 0.367 to avoid
evicting any key which had been queried even just once within
the window.

From these figures, we can observe that our cache elasti-
cally adapts to the query-intensive period by improving overall
speedup, albeit to varying degrees depending on m. For example,
the maximum observable speedup achieved with the smaller
sized window in Figure 5(a) is approximately 1.55×, with an
average node allocation of d1.7e = 2 nodes. In contrast, the
much larger sliding window of 400 in Figure 5(d) offers a
maximum observable speedup of 8×, with an average use of
d5.6e = 6 nodes. We can also observe that, after the query
intensive period expires at 300 time steps, the sliding window
will detect the normal querying rates and remove nodes as they
become superfluous. This trend can also be seen in all cases —
nodes do not decrease back down to 1 because our contraction
algorithm is quite conservative. We have set our node-merge
threshold to 65% of space required to store the coalesced cache
to address churn-avoidance, i.e., repeated allocation/deallocation
of nodes.

In terms of performance, our system benefits from higher
querying rates, as it populates our cache faster within the window.
The noticeable performance disparities among the juxtaposed
figures also indicate that the size of the sliding window is a highly
determinant factor on both performance and node allocation, i.e.,
cost. Compared with the∞ sliding window experiments in Figure
3, we can observe that our eviction scheme affords us comparable
results with lesser amounts of nodes, which translates to smaller
cost of compute resource provisioning in the Cloud.

For these same experiments, we analyze the eviction and data
reuse and eviction behavior over time in Figures 6(a), 6(b), 6(c),
and 6(d). One can see that, invariably, reuse expectedly increase
over the query-intensive period, again to varying degrees depend-
ing on window size. After 300 time steps into the experiment,

the query rate resumes to R = 50/time step, which means less
chances for reuse. This allows aggressive eviction behaviors in all
cases, except in Figure 6(d), where the window extends beyond
300 time steps.

There are several interesting trends that can be seen in these
experiments. First, the eviction behavior in Figure 6(d) appears
to oppose the upward trend observed in all other cases. Due
to the size of this window, the decay becomes extremely small
near the evicted time slice, and our cache removes records quite
aggressively. At the same time, this eviction behavior decreases
over time due to the evicted slices being a part of the query-
intensive period, which accounted for more reuse, and thus, less
probability for eviction. This trend simply was not seen in all
other cases because the window size did not allow for such
probability for reuse before records were candidates for eviction.

Another interesting observation can be made on node growth
between Figures 6(c) and 6(d). Notice that node allocation
continues to increase well after the intensive period in Figure
6(d) due to its larger window size. While this ensures more hits
after the query-intensive period expires, justifying the tradeoff
of allocation cost and the speedup of the queries after 300 time
steps is questionable in this scenario. This implies that a dynamic
window size can be employed here to optimize costs, which we
plan to address in future works.

0 100 200 300 400 500

Time Steps Elapsed

0

50

100

150

200

R
ec

or
ds

 R
eu

se
d

decay=0.99
decay=0.98
decay=0.95
decay=0.93

Query Intensive
Period

Fig. 7. Data Reuse Behavior for Various Decay α = 0.99, 0.98, 0.95, 0.93

Finally, we present the effects of the decay, α, on cache
eviction behavior. We used same querying configuration as in the
above sliding window experiments, where normal querying rate
is R = 50 queries/time step, and the intensive rate is R = 250
queries/time step. We evaluated the eviction mechanism under
the m = 100 sliding window configuration on four decay values:
α = 0.99, 0.98, 0.95, 0.93. We would expect that a smaller decay
value would lead to more aggressive eviction, which can be
inferred from Figure 7. Also note the sensitivity of α due to
its exponential nature.

When decay is small, a certain record must be reused many
more times to be kept cached in the window. However, the
benefit of this can also be argued from the perspective of cost –
the cache system pertaining to a smaller α grows much slower
and, according to Figure 7, the number of actual cache hits

0 100 200 300 400 500 600

Time Steps Elapsed

0

2

4

6

8

10
R

el
at

iv
e

Sp
ee

du
p

0

2

4

6

8 G
BA N

odes Allocated

GBA Nodes
GBA with Eviction

Query Intensive
Period

(a) Sliding Window Size = 50 time steps

0 100 200 300 400 500 600

Time Steps Elapsed

0

2

4

6

8

10

R
el

at
iv

e
Sp

ee
du

p

0

2

4

6

8 G
BA N

odes Allocated
GBA Nodes
GBA with Eviction

Query Intensive
Period

(b) Sliding Window Size = 100 time steps

0 100 200 300 400 500 600

Time Steps Elapsed

0

2

4

6

8

10

R
el

at
iv

e
Sp

ee
du

p

0

2

4

6

8 G
BA N

odes Allocated

GBA Nodes
GBA with Eviction

Query Intensive
Period

(c) Sliding Window Size = 200 time steps

0 100 200 300 400 500 600

Time Steps Elapsed

0

2

4

6

8

10

R
el

at
iv

e
Sp

ee
du

p
0

2

4

6

8 G
BA N

odes AllocatedGBA Nodes
GBA with Eviction

Query Intensive
Period

(d) Sliding Window Size = 400 time steps

Fig. 5. Speedup under Eviction/Contraction (Normal Query Rate = 50 queries/time step, Intensive Rate = 250 queries/time step)

0 100 200 300 400 500 600

Time Steps Elapsed

0

50

100

150

200

250

300

R
ec

or
ds

 (R
eu

se
d/

Ev
ic

te
d)

0

2

4

6

8 G
BA N

odes Allocated

GBA Nodes
Reused
Evicted

Query Intensive
Period

(a) Sliding Window Size = 50 time steps

0 100 200 300 400 500 600

Time Steps Elapsed

0

50

100

150

200

250

300

R
ec

or
ds

 (R
eu

se
d/

Ev
ic

te
d)

0

2

4

6

8 G
BA N

odes Allocated

GBA Nodes
Reused
Evicted

Query Intensive
Period

(b) Sliding Window Size = 100 time steps

0 100 200 300 400 500 600

Time Steps Elapsed

0

50

100

150

200

250

300

R
ec

or
ds

 (R
eu

se
d/

Ev
ic

te
d)

0

2

4

6

8 G
BA N

odes Allocated

GBA Nodes
Reused
Evicted

Query Intensive
Period

(c) Sliding Window Size = 200 time steps

0 100 200 300 400 500 600

Time Steps Elapsed

0

50

100

150

200

250

300

R
ec

or
ds

 (R
eu

se
d/

Ev
ic

te
d)

0

2

4

6

8 G
BA N

odes Allocated

Query Intensive
Period

(d) Sliding Window Size = 400 time steps

Fig. 6. Data Reuse and Eviction Behavior (Normal Query Rate = 50 queries/time step, Intensive Rate = 250 queries/time step)

over this execution does not seem to vary enough to make any
extraordinary contribution to speedup.

D. Summary and Discussion

We have evaluated our cooperative cache system from various
perspectives. The relative performance gains from the infinite
eviction window experiments show that caching service results
over the Cloud is a fruitful endeavour, but it comes at the
expense of high node allocation for ensuring cache capacity. We
showed that the overhead of node splitting can be quite high,
but is so seldom invoked that its penalties are amortized over
the sheer volume of queries submitted. We also argue that it is
rarely invoked once the cache’s capacity stabilizes. However, this
prompts a need for more intelligent strategies for reducing node
allocation penalties.

Our sliding window-based eviction strategy appears to offer
a good compromise between performance and cost tradeoffs,
and captures situations with heightened (and waning) query
intensities. For instance, the larger m = 400 sliding window,
shown in Figure 6(d), achieves an 8× speedup at the peak of
the query intensive period, while only requiring a maximum of
8 nodes, which further reduces down to 5 nodes toward the end
of the experiment.

Finally, through a study of eviction decay, we are able to
conclude that both system parameters, α and sliding window size
m, account for node growth (and thus, cost) and performance.
However, it is m that contributes far more significantly to our
system. A dynamically changing m can thus be very useful in
driving down cost.

We have also assessed the various cost aspects of the Cloud’s
persistent storage, such as Amazon S3 and Elastic Block Storage
(EBS), and other machine instance-types in our cache framework.
The cost varies among the added benefits of data persistence
and machine instances with higher bandwidth and memory. But
because this paper deals mostly with the performance aspect, and
with respect to space constraints, we discuss our findings of cost
benefits and performance tradeoffs among the varying Amazon
Cloud storage types in a related paper [9].

V. RELATED WORKS

Research efforts in storage management have proposed a cache
layer for alleviating long access times to persistent storage. For
instance, Cardenas et al.’s uniform, collaborative cache service [8]
and Tierney et al.’s Distributed-Parallel Storage System (DPSS)
[48] offer a buffer between clients and access to mass storage
systems including SDSC’s Storage Resource Broker [5]. Other
efforts, including works done by Otoo et al. [35], Bethel et
al. [7], and Vazhkudai et al. [49], consider these intermediate
caching issues in various storage environments for scientific
computing. Work has also been produced in the direction of
optimal replacement policies for disk caching in data grids [27].
Other utilities have sought for the storage of more detailed
information on the scientific, such as virtual data traces, known
as provenance. Chimera [19] is a system that stores information
on virtual data sets which affords scientists a way to understand
how certain results can be derived, as well as a way to reproduce
data derivations.

Tangential to our work is multi-query optimization (MQO) in
the area of databases, where related queries may share, and can
benefit from reusing, common data. Methods for processing like-
queries together, rather than independently, could thus greatly
improve performance [41]. Toward this goal, semantic caching
[39], i.e., based on semantic locality, has been considered in past
efforts. Particularly, Andrade, et al. describe an active semantic
caching middleware to frame MQO applications in a grid en-
vironment [2]. This middleware combines a proxy service with
application servers for processing, which dynamically interacts
with cache servers. The proxy acts as a coordinator, composing
suitable schedules for processing the query over the supported
environment. Our system differs, like all the aforementioned
effort, in that it considers cost-based pressures of the Cloud.
Specifically, our cache is sensitive to user interest over time, and
it allocates compute resources to improve performance during
query intensive periods, only to relax the resources later to save
costs.

The recently proposed Circulate architecture employs Cloud
proxies for speeding up workfow applications [51], [4]. In their
work, proxies close to the computation are used to store interme-
diate data. This data is then directly routed to the nodes involved
in the next stage of the computation. While their overarching
goal of reducing composite service time is tantamount to ours,
we clarify the distinctions. Their system focuses on eluding
unnecessary data transfers to and from some orchestrating node.
Ours deliberately caches service results to accelerate processing
times under a query-intensive scenario. Our work also focuses on
strategies for caching, managing, and altering underlying Cloud
structures to optimize the availability of cached results under
these circumstances.

Memcached [33] is a distributed cache system designed to ac-
celerate general Web applications, storing data-structure agnostic
objects in memory of up to 1MB in size. The memcached servers
utilize an LRU eviction policy upon reaching capacity. In contrast,
our system is capable of expanding to avoid capacity misses
during query intensive periods, and relaxes when the period
diminishes. We believe memcached can be used in conjunction
to our system to exploit the Cloud, and it is worth exploring in
the future.

Resource allocation is another related issue. Traditionally, a
user requests a provision for some fixed set number of com-
pute resources and reserve a span of time for exclusive usage.
A common way to request for resources is batch scheduling,
which is a ubiquitous mechanism for job submissions at most
supercomputing or Grid sites [44]. Condor [32], [20] manages a
distributed compute pool of otherwise idle machines, and puts
them to use. Condor allocates resources for jobs based on a
“matchmaking” approach [38]. Machines in the pool advertise
their resource specifications as well as conditions under which
it would be willing to take on a job. A submitted job must also
advertise its needs, and Condor allocates the necessary resources
by matching machines based on these specifications.

In [28], Juve and Deelman discussed the consequences
of applying current resource provisioning approaches on the
Grid/Cloud and argued that traditional queue-based reservation
models can suffer massive delays due to the heterogeneity of
Grid sites (different rules, priority, etc.). Raicu, et al.’s Falkon

framework [37] describes an ad hoc resource pools which are
preemptively allocated from disparate Grid sites by submitting
a provisioning job. User applications submit jobs directly to
the provisioner, rather than to the external site with the usual
methods. Since the provisioner has already preemptively allocated
the necessary resources, overheads of job submissions and dis-
patch are avoided. These advance reservation schemes, however,
abstracts the actual provisioning of resources. As per Sotomayor,
et al.’s observation, “. . . resource provisioning typically happen[s]
as a side-effect of job submission” [45]. In their paper, they
describe a lease-based approach toward resource provisioning, in
an effort which seemingly precurses today’s Cloud-usage meth-
ods, by leveraging virtual machine management. Singh, et al.’s
provisioning model selects a set of resources to be provisioned
that optimizes the application while minimizing the resource costs
[43]. Providers advertise slots to the users, and each slot denotes
the availability of resources, (e.g., number of processors), which
can be reserved for a certain timeframe, for a price. This allows
application schedulers to optimize resource provisioning for their
application based on cost. In a related effort, Huang, et al.’s
scheme helps users by automatically selecting which resources
to provision on a given workflow (DAG-based) application [25].
Our system exploits on-demand elastic resource management
provided by the Amazon EC2 Cloud. In this paper, we have
proposed algorithms to scale and relax compute resources to
handle varying workloads driven by user interest.

Our system is much-inspired by efforts done in the general
area of Web page caching and distributed hashtables (DHT).
Several methods can be used to evenly distribute the load
among cooperating Web caches, also known as proxies. Gadde,
Chase, and Rabinovich’s CRISP proxy [21] utilizes a centralized
directory service to track the exact locations of cached data.
But this simplicity comes at the cost of scalability, i.e., adding
new nodes to the system causes all data to be rehashed. Efforts,
such as Karger, et al.’s consistent hashing [29], [30] have been
used to reduce this problem down to only rehashing a subset
of the entire data set. Also a form of consistent hashing, Thaler
and Ravishankar’s approach maps an object name consistently
to the same machine [47]. Karger, et al.’s technique is currently
employed in our cooperative cache. Similar methods have also
been used in DHTs to manage large numbers of nodes (e.g.,
peer-to-peer systems) that share data. Chord [46], Pastry [40],
and Tapestry [52] are representative of such systems, among
others, and can offer log-based guarantees on the number of
hops necessary for locating data in such a large-scale system.
Because of the volatility, e.g., churn, in P2P systems, most DHT-
based implementations do not focus on offering transient data
availability when a node disconnects, which is crucial to our
application scenario, albeit that we concede to the overhead of
migration costs.

Our system differs from traditional Web caching and DHT
systems in the following ways. The cache was originally devel-
oped as a component to our service-based workflow composition
system, Auspice [10], [11]. We are reusing derived results to
accelerate long running services with the side-effect of reducing
service load. Additionally, our cache’s API allows Auspice to
easily compose derived results into complex workflow structures,
which requires more appropriate indexing of intermediate data.

We are furthermore considering the cooperative cache problem in
the context of Clouds, where resource allocation and deallocation
must be coordinated to reduce cost.

VI. CONCLUDING REMARKS

Cloud providers have begun offering users at-cost access to
on demand computing infrastructures. In this paper, we propose
a Cloud-based cooperative cache system for reducing execution
times of data-intensive processes. The resource allocation algo-
rithm presented herein are cost-conscious as not to over-provision
Cloud resources. We have evaluated our system extensively,
showing that, among other things, our system is scalable to
varying high workloads, cheaper than utilizing fixed network-
ing structures on the Cloud, and effective for reducing service
execution times.

A costly overhead is the node allocation process itself. Strate-
gies, such as preloading and data replication can certainly be
used to implement an asynchronous node allocation. Works on
instantaneous virtual machine boots [13], [31] have also been
proposed and can be considered here. However, with the current
reliance on commercial-grade Clouds, we should seek unintrusive
schemes. Modifications to current approaches, like the Falkon
Framework [37], where ad hoc resource pools are preemptively
allocated from remote sites, may be also employed here. Record
prefetching from a node that is predictably close to invoking
migration can also be considered to reduce migration cost.

As discussed in Section IV, although our sliding window size
for eviction is a parameter to the system, there may be merit in
managing this value dynamically to reduce unnecessary (or less
cost-effective) node allocation. Predictive eviction methods could
be well worth considering.

As we move forward in the data-intensive age, the Cloud has
made a timely entrance as a paradigm for supporting such large-
scale computing tasks. In this paper, we have explored one such
method, through on-demand cooperative caching, for reducing
processing times.

ACKNOWLEDGMENTS

We would like to thank our reviewers, whose insightful com-
ments and suggestions for are not only helpful, but also crucial,
to further development of our research.

This work is supported by NSF grants 0541058, 0619041, and
0833101.

REFERENCES

[1] Amazon elastic compute cloud, http://aws.amazon.com/ec2.
[2] H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Active semantic caching

to optimize multidimensional data analysis in parallel and distributed
environments. Parallel Comput., 33(7-8):497–520, 2007.

[3] M. Armbrust, et al. Above the clouds: A berkeley view of cloud computing.
Technical Report UCB/EECS-2009-28, EECS Department, University of
California, Berkeley, Feb 2009.

[4] A. Barker, J. B. Weissman, and J. I. van Hemert. The circulate architecture:
Avoiding workflow bottlenecks caused by centralised orchestration. Cluster
Computing, 12(2):221–235, 2009.

[5] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The sdsc storage resource
broker. In CASCON ’98: Proceedings of the 1998 conference of the Centre
for Advanced Studies on Collaborative research, page 5. IBM Press, 1998.

[6] R. Bayer and E. McCreight. Organization and maintenance of large ordered
indexes. Software pioneers: contributions to software engineering, pages
245–262, 2002.

[7] W. Bethel, B. Tierney, J. lee, D. Gunter, and S. Lau. Using high-speed wans
and network data caches to enable remote and distributed visualization. In
Supercomputing ’00: Proceedings of the 2000 ACM/IEEE Conference on
Supercomputing, Dallas, TX, USA, 2000.

[8] Y. Cardenas, J.-M. Pierson, and L. Brunie. Uniform distributed cache
service for grid computing. International Workshop on Database and Expert
Systems Applications, 0:351–355, 2005.

[9] D. Chiu and G. Agrawal. Evaluating caching and storage options on
the amazon web services cloud. In Proceedings of the 11th ACM/IEEE
International Conference on Grid Computing (Grid’10), 2010.

[10] D. Chiu, S. Deshpande, G. Agrawal, and R. Li. Composing geoinformatics
workflows with user preferences. In Proceedings of the 16th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information
Systems (GIS’08), New York, NY, USA, 2008.

[11] D. Chiu, S. Deshpande, G. Agrawal, and R. Li. Cost and accuracy sensitive
dynamic workflow composition over grid environments. In Proceedings of
the 9th ACM International Conference on Grid Computing (Grid’08), 2008.

[12] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services
description language (wsdl) 1.1.

[13] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In NSDI’05:
Proceedings of the 2nd conference on Symposium on Networked Systems
Design & Implementation, pages 273–286, Berkeley, CA, USA, 2005.
USENIX Association.

[14] C.Hoffa, G.Mehta, T.Freeman, E.Deelman, K.Keahey, B.Berriman, and
J.Good. On the use of cloud computing for scientific workflows. In
ESCIENCE ’08: Proceedings of the 2008 Fourth IEEE International Con-
ference on eScience, pages 640–645. IEEE Computer Society, 2008.

[15] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large
clusters. In OSDI’04: Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation, pages 10–10, Berkeley, CA,
USA, 2004. USENIX Association.

[16] Erdas client, http://apollopro.erdas.com/apollo-client.
[17] I. Foster. Globus toolkit version 4: Software for service-oriented systems.

In IFIP International Conference on Network and Parallel Computing,
Springer-Verlag LNCS 3779, pages 2–13, 2005.

[18] I. Foster. Service-oriented science. In Science, 308, pages 814–817, 2005.
[19] I. T. Foster, J.-S. Vöckler, M. Wilde, and Y. Zhao. Chimera: A virtual

data system for representing, querying, and automating data derivation. In
SSDBM ’02: Proceedings of the 14th International Conference on Scientific
and Statistical Database Management, pages 37–46, Washington, DC, USA,
2002. IEEE Computer Society.

[20] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke. Condor-G: A
computation management agent for multi-institutional grids. In Proceedings
of the Tenth IEEE Symposium on High Performance Distributed Computing
(HPDC), pages 7–9, San Francisco, California, August 2001.

[21] S. Gadde, M. Rabinovich, and J. Chase. Reduce, reuse, recycle: An approach
to building large internet caches. Workshop on Hot Topics in Operating
Systems, 0:93, 1997.

[22] R. Geambasu, S. D. Gribble, and H. M. Levy. Cloudviews: Communal data
sharing in public clouds. In Proc. of the Workshop on Hot Topics in Cloud
Computing (HotCloud), 2009.

[23] Google app engine, http://code.google.com/appengine.
[24] A. Guttman. R-trees: A dynamic index structure for spatial searching. In

SIGMOD Conference, pages 47–57, 1984.
[25] R. Huang, H. Casanova, and A. A. Chien. Automatic resource specification

generation for resource selection. In SC ’07: Proceedings of the 2007
ACM/IEEE conference on Supercomputing, pages 1–11, New York, NY,
USA, 2007. ACM.

[26] C. S. Jensen, D. Lin, and B. C. Ooi. Query and update efficient b+tree-
based indexing of moving objects. In Proceedings of Very Large Databases
(VLDB), pages 768–779, 2004.

[27] S. Jiang and X. Zhang. Efficient distributed disk caching in data grid
management. IEEE International Conference on Cluster Computing (CLUS-
TER), 2003.

[28] G. Juve and E. Deelman. Resource provisioning options for large-scale
scientific workflows. In ESCIENCE ’08: Proceedings of the 2008 Fourth
IEEE International Conference on eScience, pages 608–613, Washington,
DC, USA, 2008. IEEE Computer Society.

[29] D. Karger, et al. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In ACM Symposium
on Theory of Computing, pages 654–663, 1997.

[30] D. Karger, et al. Web caching with consistent hashing. In WWW’99:
Proceedings of the 8th International Conference on the World Wide Web,
pages 1203–1213, 1999.

[31] H. A. Lagar-Cavilla, J. Whitney, A. Scannell, P. Patchin, S. M. Rumble,
E. de Lara, M. Brudno, and M. Satyanarayanan. Snowflock: Rapid virtual
machine cloning for cloud computing. In 3rd European Conference on
Computer Systems (Eurosys), Nuremberg, Germany, April 2009.

[32] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle work-
stations. In Proceedings of the 8th International Conference of Distributed
Computing Systems, June 1988.

[33] memcached, a distributed memory object caching system,
http://www.memcached.org.

[34] Microsoft azure, http://www.microsoft.com/windowsazure/.
[35] E. J. Otoo, D. Rotem, A. Romosan, and S. Seshadri. File caching in data

intensive scientific applications on data-grids. In First VLDB Workshop on
Data Management in Grids. Springer, 2005.

[36] M. Rabinovich and O. Spatschek. Web caching and replication. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[37] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde. Falkon: a fast
and light-weight task execution framework. In SC ’07: Proceedings of the
2007 ACM/IEEE conference on Supercomputing, pages 1–12, New York,
NY, USA, 2007. ACM.

[38] R. Raman, M. Livny, and M. Solomon. Matchmaking: An extensible
framework for distributed resource management. Cluster Computing,
2(2):129–138, 1999.

[39] Q. Ren, M. H. Dunham, and V. Kumar. Semantic caching and query
processing. IEEE Trans. on Knowl. and Data Eng., 15(1):192–210, 2003.

[40] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems. In IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), pages 329–350,
Nov. 2001.

[41] T. K. Sellis. Multiple-query optimization. ACM Trans. Database Syst.,
13(1):23–52, 1988.

[42] Y. Simmhan, R. Barga, C. van Ingen, E. Lazowska, and A. Szalay. Building
the trident scientific workflow workbench for data management in the
cloud. Advanced Engineering Computing and Applications in Sciences,
International Conference on, 0:41–50, 2009.

[43] G. Singh, C. Kesselman, and E. Deelman. A provisioning model and
its comparison with best-effort for performance-cost optimization in grids.
In HPDC ’07: Proceedings of the 16th international symposium on High
performance distributed computing, pages 117–126, New York, NY, USA,
2007. ACM.

[44] W. Smith, I. Foster, and V. Taylor. Scheduling with advanced reservations.
In In Proceedings of IPDPS 2000, pages 127–132, 2000.

[45] B. Sotomayor, K. Keahey, and I. Foster. Combining batch execution and
leasing using virtual machines. In HPDC ’08: Proceedings of the 17th
international symposium on High performance distributed computing, pages
87–96, New York, NY, USA, 2008. ACM.

[46] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of the ACM SIGCOMM ’01 Conference, San Diego, California,
August 2001.

[47] D. Thaler and C. Ravishankar. Using name-based mappings to increase hit
rates. Networking, IEEE/ACM Transactions on, 6(1):1–14, Feb 1998.

[48] B. Tierney, et al. Distributed parallel data storage systems: a scalable
approach to high speed image servers. In MULTIMEDIA ’94: Proceedings
of the second ACM international conference on Multimedia, pages 399–405,
New York, NY, USA, 1994. ACM.

[49] S. Vazhkudai, D. Thain, X. Ma, and V. Freeh. Positioning dynamic
storage caches for transient data. IEEE International Conference on Cluster
Computing, pages 1–9, 2006.

[50] C. Vecchiola, S. Pandey, and R. Buyya. High-performance cloud computing:
A view of scientific applications. Parallel Architectures, Algorithms, and
Networks, International Symposium on, 0:4–16, 2009.

[51] J. Weissman and S. Ramakrishnan. Using proxies to accelerate cloud
applications. In Proc. of the Workshop on Hot Topics in Cloud Computing
(HotCloud), 2009.

[52] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz. Tapestry: A resilient global-scale overlay for service
deployment. IEEE Journal on Selected Areas in Communications, 22(1):41–
53, Jan. 2004.

