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Abstract

Web service-based workflow management systems have
garnered considerable attention for automating and
scheduling dependent operations. Such systems often sup-
port user preferences, e.g., time of completion, but with the
rebirth of distributed computing via the grid/cloud, new
challenges are abound: multiple disparate data sources,
networks, nodes, and the potential for moving very large
datasets. In this paper, we present a framework for integrat-
ing QoS support in a service workflow composition system.
The relationship between workflow execution time and ac-
curacy is exploited through an automatic workflow compo-
sition scheme. The algorithm, equipped with a framework
for defining cost models on service completion times and
error propagation, composes service workflows which can
adapt to user’s QoS preferences.

1 Introduction

The success of service frameworks has preceded the dis-
tribution of interoperable processes, data sets, and other re-
sources in various scientific domains [15]. But with the
high availability of distributed heterogeneous data sets and
web services comes the nontrivial challenge for scientists
and other end-users to manage such information. For in-
stance, certain information involves execution of several
service operations with disparate data sources in a partic-
ular sequence, in a process known as service composition®.
Certainly, the ultimate hope for enabling these workflows is
to automate their composition while simultaneously hiding
low-level details such as service and data discovery, inte-
gration, and scheduling from the user.

Often in practice, there exist multiple ways of answering
a given query, using different combinations of data sources
and services. Some combinations are likely to result in
higher cost, but better accuracy, whereas others might lead
to quicker results and lower accuracy. This could be due to
that some data collection methods involve higher resolution

§Throughout this paper, we use terms service composition and work-
flow composition interchangeably although it has been pointed out that
service workflow synthesis is also appropriate.

or because some datasets are available at servers with lower
access latencies. Meanwhile, different classes of users can
have different querying requirements. For instance, some
users may want the fastest answers while others require the
most accurate response. Users may also prefer the faster of
the methods which can meet certain accuracy constraints.
While most efforts in workflow management systems focus
directly on minimizing execution times [26, 30, 1] through
scheduling heuristics, it would be highly desirable to enable
user preferences for both accuracy and time.

Our system seeks to alleviate users from the need of un-
derstanding the cost and accuracy tradeoffs associated with
different datasets and services that could be used to answer
a query. This paper presents such a framework for service
workflow composition, which uses a novel approach for dy-
namically supporting user preferences on time and accu-
racy. To automate the time-accuracy tradeoff in web service
composition, we allow developers to expose an accuracy pa-
rameter, e.g., sampling rate. Our system takes unrestricted
models as input for predicting process completion time and
error/accuracy propagation of the applications. Our work-
flow composition algorithm employs an efficient algorithm
to automatically regulate the accuracy parameter based on
the defined cost models to meet the user-specified QoS con-
straints. We conducted experiments to evaluate two aspects
of our algorithm. First, we show that, although the cost
models can be invoked quite frequently during workflow
planning, they contribute little overhead to the overall plan-
ning time. Secondly, we present the effect that the accuracy
parameter adjustment scheme has on planned workflows.

The remainder of this paper is organized as follows. An
overview of our system is presented in the next section. In
Section 3 we discuss technical details of our cost models
and workflow composition algorithm. Performance evalua-
tions of our workflow composition algorithm are presented
in Section 4, and a comparison of our work with related re-
search efforts follows in Section 5. Lastly, we conclude and
discuss future opportunities in Section 6.

2 System Architecture Overview

An overview of the system is presented here while de-
tailed descriptions can be found in previous works [6, 7, 8].



Our system, as a whole, functions as a service workflow
broker: as users submit high-level queries to the system,
the broker automatically plans and executes the workflows
involved in deriving the desired result (virtual data) while
hiding such complexities as service composition, domain
knowledge, and QoS optimization from the user.
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Figure 1. Workflow Broker Architecture

Depicted in Figure 1, the broker’s architecture consists
of four independent layers, each with a well-defined set of
functionalities. The Query Decomposition Layer employs
the StanfordNLP [20] parser and WordNet [13] libraries to
decompose high-level user queries into a set of keywords
and dependencies. The keywords are mapped to distinct
concepts within the domain ontology resident in the subse-
quent layer. A more detailed description of this process is

given in our other paper [6].

The task of the Semantics Layer is two-fold. First, this
layer maintains an active list of available compute nodes,
services, data sets, and their accompanying metadata. Ser-
vices are described in WSDL [5] and data sets in their re-
spective metadata standards. Since the work described in
this paper deals with geospatial data sets, the Content Stan-
dard for Digital Geospatial Metadata (CSDGM) [14], is
used for data annotation. The second task of this layer is
providing a domain-specific ontology. The ontology defines
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Figure 2. Ontology for Domain Description

relationships between the available data sets and services to
concepts a domain. For example, there is a need for the
system to understand how “water levels” in some scientific
domain are derived using some existing data sets, services,
or combinations of both. These relationships help facilitate
planning algorithms for service composition. The ontology,
specified in the Web Ontology Language (OWL) [9], is a
directed graph with the following requirements:

e The ontology consists of three disjoint sets (classes) C,
S, and D representing the set of domain concepts, the
set of available services known to the system, and the
known domain-specific data types, respectively.

e Two types of directed edges (relations) exist: concepts
may be derived F'rom data or service nodes and a ser-
vice inputsE'rom concepts.

This ontological definition, shown in Figure 2, simplifies
the effort to indicate which services and data types are re-
sponsible for deriving specific domain concepts. The ontol-
ogy is predefined by experts within the scientific domain.
Next, the Planning Layer assumes that the ontology and
metadata are in place and defined. The planning algorithm,
discussed in detail in the following section, relies heavily
on the Semantics Layer. The planner enumerates service-
synthesized workflows to answer a particular query through
traversals of the domain ontology. The existence of needed
services and data sets is identified by the ontological index.
This layer sends a set of workflows all capable of answering
the user query to the Execution Layer for processing, and
the resulting virtual data is finally returned back to the user.



This paper focuses on the mechanisms within the Plan-
ning Layer for handling QoS constraints while composing
service workflows. For instance, one might issue the fol-
lowing query to retrieve a cropped image of Columbus,
Ohio in under 60 seconds. To answer this query, the sys-
tem might consider multiple workflow plans, possibly em-
ploying image compression services to speed up data move-
ment in order to produce the desired image within 60 sec-
onds. Appropriate services and data sets should be iden-
tified and selected for use and their composition is reified
dynamically through communication with the domain on-
tology from the Semantics Layer. Through this process, the
workflow composition algorithm, WFEnum, enumerates a
list of valid workflow candidates such that when each is ex-
ecuted, returns a suitable response to the query.

From the list of workflow plans, the WFEnum algorithm
must also examine the cost of each in order to determine a
sub-list of candidates that meet user constraints. The algo-
rithm can dynamically adjust workflow accuracy (by invok-
ing data reduction services, for instance) in order to meet
expected QoS requirements. Finally, the execution of work-
flows is carried out and the presence of faults within a cer-
tain execution, caused by such factors as network downtime
or data/process unavailability, triggers the execution of the
next queued workflow (if available) to provide the next best
possible response.

3 QoS-Aware Service Composition

In this section we focus on problem formulation and im-
plementation details of our approach. This paper focuses on
modeling tradeoffs between time and errors within scientific
domains, despite that other criteria can also be considered,
e.g., utility costs. In practice, tasks can be composed of dis-
parate services chained together to produce some desired
values [2]. Also called composite services, workflows are
often expressed as directed acyclic graphs where the ver-
tices denote services and data elements and directed edges
represent the flow of execution. Workflows, in our context,
can also be recursively defined as follows. Given some set
of data, D and a set of services S, a workflow

€
w=<d
(0p, Pop)

such that terminals € and d € D denote a null workflow and
a data instance respectively. Nonterminal (op, P,,) € S is
a tuple where op denotes a service operation with a corre-
sponding parameter list Py, = (p1,...,px) and each p; is
itself a workflow. To put simply, a workflow is a tuple which
either contains a single data instance or a service operation
whose parameters are, recursively, (sub)workflows.

3.1 Modeling Workflow Cost

Two cost functions are proposed for aggregating work-
flow execution time and error propagation respectively. A

workflow’s time cost can be estimated by:

0, if w=e
tnet(d), if weD
T(w) = .
tz(op, Pop)+ itwesS
tnet (OPa Pop) + max T(pi)7
pPi€Pop

If workflow w is a base data element, then w = d, and
the cost is trivially the data transmission time, t,,.;. When
w is a service, then w = (op, P,,), and its time can be

summarized as the sum of the service’s execution time ¢,
network transmission time of its product, and, recursively,
the maximum time taken by all of its parameters (assuming
their execution can be carried out concurrently).

The error aggregation function, F(w), which represents
the error estimation of a given workflow, is also in a recur-
sive sum form:

0, ifw=e
E(w) = { o(d), if weD
o(op, Pop) +prréax E(p;), ifweS

i op

Due to the heterogeneity of datasets and processes, it is
expected that disparate workflows will yield results with
fluctuating measures of accuracy. Again, at the base case
lies the expected error of a particular data set, o(d). An
error value can also be attributed to a service execution,
o(op, P,,). For instance, errors will be introduced if a sam-
pling service is called to reduce data size or some interpo-
lation/extrapolation service is used estimate some value.

3.2 Workflow Enumeration and Pruning

The goal of a workflow planning algorithm is to enumer-
ate a sequence of workflows W, = (wy,...,wy) capable
of answering some query ¢q by employing the available ser-
vices and data sets. The execution of each w; € Wj is
carried out, if needed, by an order determined by cost or
QoS parameters. Thus, upon workflow execution failure,
the system can persistently attempt alternative, albeit po-
tentially less optimal, workflows.

Our workflow planning algorithm, WFEnum (Algorithm
1), takes as input the query’s targeted domain concept,
target, the user’s time constraint, Q0S¢;m., and error con-
straint, Q0S¢0 WFEnum runs a modification of Depth-
First Search on the domain ontology starting from target.
It is defined by the ontology that every concept can be re-
alized by various data types or services. WFEnum starts
(Line 2) by retrieving a set, Agq, of all data types that
can be used to derive the input concept, target. Each el-
ement in Ay, is a potential data workflow candidate, i.e.,
target can be derived by the contents within some file. Cor-
rectly and quickly identifying the necessary files based on
the user’s query parameters (Line 4) is a challenge and out
of the scope of this work.t On Line 7, each file is used

Details on query parsing, the handling of immediate data values, and
data identification can be found in [6]



to call an auxiliary procedure, QoSMerge, to verify that its
inclusion as a workflow candidate will not violate QoS pa-
rameters.

Algorithm 1 WFEnum(target, QoStime, Q0Serror)

LW+ ()
2: Adata  Ontology.derivedFrom(D, target)
3: for all dataType € Agato do

4. F < dataType.getFiles()

5. forall f € F'do

6: w < (f)

7: W «+ (W, QoSMerge(w, 00, 00, Q0Stime, Q0Serror))
8 end for

9: end for

10: Asrpe < Ontology.derivedFrom(S, target)
11: forall op € Asrpc do
12: P, < op.getParams()

13: Wop < ()

14: forallp € P,, do

15: Wy <= WFEnum(p.target, QoS)
16: Wop  Wop X W,

17:  end for

18:  for all pm € W,, do

19: w < (op, pm)

20: W+ (W, QoSMerge(w, 00, 00, Q0Stime, Q0Serror))
21:  end for

22: end for

23: return W

The latter half of the WFEnum algorithm handles
service-based workflow planning. From the ontology, a set
of relevant service operations, Ag;.,. is retrieved for deriv-
ing target. For each service operation, op, there may ex-
ist multiple ways to plan for its execution because each of
its parameters, p, by definition, is a (sub)problem. There-
fore, workflows pertaining to each parameter p must first
be computed via a recursive call (Line 15) to solve each
parameter’s (sub)problem, whose results are stored in W,
The combination of these parameter (sub)workflows in W,
is then established through a cartesian product of its derived
parameters (Line 16). For instance, consider a service work-
flow with two parameters of concepts a and b: (op, (a,b)).
Assume that target concepts a is derived using workflows
W, = (w§,w§) and b can only be derived with a single
workflow W, = (w?). The distinct parameter list plans are
thus obtained as W, = W, x W;, = ((w§, w}), (wg, wh)).
Each tuple from W,,, is a unique parameter list, pm. Each
service operation, when coupled with a distinct parameter
list (Line 19) produces an equally distinct service-based
workflow which again invokes QoSMerge for possible in-
clusion into the final workflow candidate list (Line 20).
In our example, the final list of workflows is obtained as
W = ((op, (wf, wh)), (op, (w§, wh)).

When a workflow becomes a candidate for inclusion,
QoSMerge (Algorithm 2) is called to make a final decision:
prune, include as-is, or modify workflow accuracy then in-
clude. For simplicity, we consider a single error model,
and hence, just one adjustment parameter in our algorithm.

Algorithm 2 QoSMerge(w, ', €', Q0Stime, Q0Serror)

1: /* no time constraint */
2: if QoS.Time = oo then
3: Cr < o©

4: end if

5: /* no accuracy constraint */
6: if QoS.Err = oo then
7: Cg + o0

8: end if
9: /* constraints are met */

10: if T'(w) < QoStime A E(w) < Q0Serror then

11:  return w /* return w in current state */

12: end if

13: /* convergence of model estimations */

14: if |T(w) —t'| < Cr A |E(w) — €'| < Cg then

15:  return () /* prune w */

16: else

17:  « < w.getNextAdjustableParam()

18: ~ < suggestParamValue(a, w, Q0Serror, CE)

190 Waq; < w.setParam(ay, y)

20:  return QoSMerge(waqj, T'(w), E(w), QoStime, Q0Serror)
21: end if

QoSMerge inputs the following arguments: (i) w, the work-
flow under consideration, (ii) ¢’ and (iii) ¢’ are the predicted
time and error values of the workflow from the previous it-
eration (for detecting convergence), and (iv) Q0S¢;me and
QoSerror are the QoS objects from the query.

Initially, QoSMerge assigns convergence thresholds C'g
and Cr for error and time constraints respectively. These
values are assigned to oo if a corresponding QoS is not
given. Otherwise, these thresholds assume some insignif-
icant value. If the current workflow’s error and time estima-
tions, F(w) and T'(W), meet user preferences, the work-
flow is included into the result set. But if the algorithm
detects that either of these constraints is not met, the system
is asked to provide a suitable value for «, the adjustment
parameter of w, given the QoS values.

Taken with the suggested parameter, the QoSMerge pro-
cedure is called recursively on the adjusted workflow, wg;.
After each iteration, the accuracy parameter for w is ad-
justed, and if both constraints are met, w is returned to
WFEnum for inclusion in the candidate list, W. However,
when the algorithm determines that the modifications to w
provide insignificant contributions to its effects on T'(w)
and F(w), i.e., the adjustment parameter converges with-
out being able to meet both QoS constraints, then w is left
out of the returned list. As an aside, the values of ¢’ and e’ of
the initial QoSMerge call on (Lines 7 and 20) of Algorithm
1 are set to oo for dispelling the possibility of premature
convergence.

QoSMerge employs the suggestParamValue procedure
(Algorithm 3) to tune the workflow’s adjustment parame-
ters.¥ This algorithm has two cases: The trivial case is that

t Although Algorithm 3 only shows error QoS awareness, time QoS is
handled in much the same way.



Algorithm 3 suggestParamValue(a, w, Q0Serror, C)
1: /* trivially invoke model if one exists for suggesting o */
2: if 3 model(c, w.op) then
3: M <+ getModel(w.op, o)

4:  return M .invoke(QoS.Err)

5: else

6: min <— a.min

7: maxr < a.max

8: repeat

9: m' < (min + mazx)/2

10: Wadj < w.setParam(a, m')
11: if QoS.Err < E(waq;) then
12: min < m’

13: else

14: mazx < m’

15: end if

16:  until (max < min V |E(wqeq;) — QoS.Err| < Cg)
17:  return m/
18: end if

a model is supplied for arriving at an appropriate value for
«, the adjustment parameter. Sometimes this model is sim-
ply inverse of either the time or error models that exist for
solving T'(w) and E(w).

However, finding a model for suggesting o can be non-
trivial. In these cases, a can be found by employing the
existing models, T'(w) and E(w) in a forward fashion. For
example, consider that « is the rate at which to sample some
specific file as a means for reducing workload. The goal,
then, is to maximize the sampling rate while being sure
that the workflow it composes remains below Q0S4 and
QoSerror. Since sampling rates are restrained to a specific
range, i.e., « € [0, 1], binary search can be utilized to find
the optimal value (Lines 5-16 in Algorithm 3). For this to
work properly T'(w) and E(w) are assumed to be monoton-
ically increasing functions, which is the case in most cases.

If either QoS constraint is not given by the user, its re-
spective models is actually never invoked. In this case,
QoSMerge becomes the trivial procedure of immediately
return workflow candidate w. In Algorithm 2 this is equiv-
alent to assigning the QoS constraints to co.

3.3 Service Framework Implementation

Our goal of automatically composing QoS-aware ser-
vices relies on a structure encompassing service and data
availability, access costs, and their relations to the supported
domain. In this direction we implemented a service regis-
tration framework, shown in Figure 3. To register a service
into our system, a domain expert initially inputs the ser-
vice’s WSDL file. Our system validates the WSDL and pe-
ruses through each supported operation. For each operation,
(op, Pyp), the system asks the expert for multiple inputs: (i)
K,, — keywords describing each of the operation’s param-
eters p € P,p, (i) Koyt — keywords describing the opera-
tion’s output, and (iii) a set of models/equations defining the
operation’s error propagation and execution time, i.e., those

models discussed previously in Section 3.1.
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Figure 3. Service Registration

Upon the given inputs, our system registers each pre-
scribed service operation in the following way. First, the
system’s ontology must be updated to reflect the new ser-
vice operation. A new service instance for op is added into
the service class, S. Next, relational edges for the new ser-
vice are computed. To do this, WordNet [13] libraries are
used to match like-terms in each of the provided K, sets.
The reduced set of terms is then matched to concepts within
the system’s domain ontology (keyword-to-concept map-
ping is assumed to be already provided). For each parameter
p, an inputsFrom edge to the computed domain concept is
added into the ontology. The same process is taken for pre-
scribing the derivedFrom edge for K,,;. With ontological
updates in place, the new operation is now available to the
WFEnum algorithm for workflow planning.

Next, the registration process handles the input cost
models per operation. Equipped with an equation parser,
our framework allows general infix equations to be speci-
fied representing each model. Alternatively, algorithms can
also be defined (in Java) for realizing more complex mod-
els. These models are appended onto the system’s service
configuration file, srvcModels.xml. In Figure 4, models are
defined for an operation, DEMDiff, which inputs two files,
DEM, and DEM5. A Digital Elevation Model (DEM) is
a file consisting of a matrix whose points represent surface
elevation. For this particular operation, notice that the er-
ror model, o, is defined as a method call. Upon the need
to invoke o, our system dynamically loads the specified
class, geodomain.GeoError, and calls the DEM ComputeEr-
ror method on some given sampling rate.



<operation name="DEMDiff">

<!-- sized -->

<model type="outputModel"
equation="max(DEM1.SIZE, DEM2.SIZE)" />

<l-- tx -->
<model type="execTimeModel"

equation="8.11E-7 * max(DEM1.SIZE, DEM2.SIZE) + .." />
<!-- 0 -—>

<model type="errorModel"
class="geodomain.GeoError"
method="DEMComputeError(RATED)" />

<l-- ... -

</operation>

Figure 4. SrvcModels.xml Snippet

3.4 An Experimental Example

As a concrete example for this work, we consider an of-
ten utilized workflow in the geospatial domain. The query,
which we refer to as DEM Query, measures land elevation
change in a span of time. We focused on the particular ad-
justable accuracy parameter of sampling rate on data sets.

The DEM Query involves a simple algorithm which ex-
tracts the elevation between two Digital Elevation Model
(DEM) files: DEM; and DEM>. A DEM is essentially an
m X n grid with elevation values at each point. But sup-
pose that D E M> is sampled to reduce execution time cost.
Sampling effectively widens the gap between each pair of
points. This variation between resolutions presents difficul-
ties to the otherwise trivial computation of elevation differ-
ence, DEM; — DE M. In order to compensate for the un-
known values of D E M, interpolation becomes necessary,
which likely produces errors.

Together with the Department of Civil Engineering and
Geodetic Science at Ohio State University, we analyzed the
physical errors introduced by interpolation as a function of
sampling rate. Details on this effort are discussed in another
paper [7]. This process, o, for modeling DEM errors is im-
plemented as a method call in the QoSMerge algorithm for
solving error cost. The time models presented in Figure 4
were computed using multiple regression. In our example,
we did not include a trivial model for suggesting parame-
ters, which forces the invocation the nontrivial case in Al-
gorithm 3.

4 Experimental Results

The performance evaluation focuses on two goals: (i)
To evaluate the overhead of workflow enumeration algo-
rithm and the impact of pruning. (ii) To evaluate the ef-
ficiency and effectiveness of our adaptive QoS parameter
scheme. The initial goal is to present the efficiency of Al-
gorithm 1. This core algorithm, called upon every given
query, emcompasses both auxiliary algorithms: QoSMerge
— the decision to include a candidate and SuggestParam-
Value — the invocation of error and/or time models to ob-

tain an adjustment value appropriate for meeting user pref-
erences. Thus, an evaluation of this algorithm offers a
holistic view of our system’s efficiency. A synthetic ontol-
ogy, capable of allowing the system to enumerate thousands
of workflows, consisting of five activities each, for a user
query, was generated for purposes of facilitating this scal-
ability experiment. The results, depicted in Figure 5, was
repeated for an increasing number of workflow candidates
(i.e., |W]| = 1000, 2000, ...) enumerated by WFEnum on
four configurations (solid lines). These four settings corre-
spond to user queries with (i) no QoS constraints, (ii) only
error constraints, (iii) only time constraints, and (iv) both
constraints.
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Figure 5. Cost Model Overhead and Pruning

Expectedly, the enumeration algorithm runs in propor-
tional time to the numbers of models supported. To evaluate
our algorithm’s efficiency, we altered our previous experi-
mental setting to contain exactly one workflow within each
candidate set that meets both time and error constraints.
That is, for each setting of |WW| + 1, the algorithm now
prunes |W| workflows (dashed line). The results show
that cost-based pruning algorithm is as efficient as no-cost
model since the amount of workflows considered is effec-
tively minimized due to their cost being unable to fulfill
QoS requirements.

Next, we demonstrate the system’s efforts for supporting
user preferences. We begin by presenting an evaluation of
the adaptive workflow parameter suggestion procedure. For
this experiment, the sampling rate is the exposed workflow
accuracy adjustment parameter. Table 1 shows the ideal
and actual, i.e., system provided, error targets. On the left
half of the table, the ideal accuracy % is the user provided
accuracy constraint and the ideal error is the error value
(from the model) expected given this corresponding accu-
racy preference. The right half of the table shows the actual
accuracy % and errors that the system provided through the
manipulation on sampling rate. As seen in the table, al-
though the error model appears to be extremely sensitive
to diminutive amounts of correction, our system’s sugges-



Table 1. Suggested Value of Parameters

Ideal System Suggested
Acc % | Error (meters) || Acc % | Error (meters)

10 8.052 11.81 8.052001
20 7.946 21.15 7.945999
30 7911 28.61 7.911001
40 7.893 34.96 7.892999
50 7.868 50.52 7.867996
60 7.859 60.16 7.858989
70 7.852 70.65 7.851992
80 7.847 80.71 7.847001
90 7.8437 89.07 7.843682
100 7.8402 99.90 7.840197

tion of sampling rates does not allow a deviation of more
than 1.246% on average. It is also observable that the %
of deviation causes minute, if not negligible, differences (in
meters) as compared to the ideal accuracies.

Finally, the DEM query was executed with user given ac-
curacy preferences of 10%, 20%, ..., 100% on DEM files
of sizes 125mb and 250mb. As seen in Figure 6, the sam-
pling rates along with the workflow’s corresponding execu-
tion times at each accuracy preference, increase as the user’s
accuracy preference increases. The figure clearly shows the
benefits from using sampling, as the execution time is re-
duced polynomially despite some loss in accuracy.
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Figure 6. Workflow Accuracy and Corre-
sponding Execution Times for DEM Query

We believe that our experimental results suggest that the
system maintains robustness against user defined cost, and
although not shown due to space limitations, parameter ad-
justment for meeting time-based QoS constraints exhibited
similar results.

5 Related Works

The class of service/workflow composition systems for
supporting composite business and scientific processes has
been studied extensively in a number of works [22, 28,
16, 17, 3, 25, 24]. These systems, which borrow tech-
niques from AI Planning, typically enable end-users to
compose workflows from a high level perspective and au-
tomate workflow scheduling and execution. Workflow sys-
tems with QoS support have also been developed. Most
works in this area concentrate on process/service scheduling
in order to minimize total execution times. Eder et al. sug-
gests heuristics for computing process deadlines and meet-
ing global time constraints [12]. Other works, including
Zeng et al.’s workflow middleware [30], Pegasus [10, 18],
Amadeus [4], Askalon [26], and more recently, stochastic
modeling approaches [1, 27] exploit grid service technolo-
gies, where datasets are inherently assumed heterogeneous
and intelligent workflow scheduling on resource availability
becomes a greater issue in meeting time constraints.

The notion and merits of utilizing service workflows,
or so-called service chains, within the specific scope of
geoinformatics were originally highlighted in [2]. How-
ever, to truly realize the autonomous construction of work-
flows relies heavily on well-defined and standardized do-
main specific information. Consequently, studies on the use
of geospatial ontologies for automated workflow composi-
tion have been carried out. The work of Lemmens et al.
[21] describes a framework for semi-automatic workflow
composition. Yue et al. successfully demonstrated that au-
tomatic construction of geospatial workflows can be real-
ized using their ontological structure [29, 11]. Hobona et
al. [19] combines a well-established geospatial ontology,
SWEET [23], with an adopted notion of semantic similarity
of the constructed workflows and the user’s query.

Our system differs from the above in the way that we
assume multiple workflow candidates can be composed for
any given user query. This set of candidates is pruned on
the apriori principle from the given user preferences, mak-
ing the workflow enumeration efficient. Furthermore, we
focus on an accuracy-oriented task by allowing the user to
specify application/domain specific time and error propaga-
tion models. Our system offers the online ability to adjust
workflow accuracies in such a way that the modified work-
flow optimizes the QoS constraints.

6 Conclusion and Future Work

This paper reports an approach toward enabling time
and accuracy constraints in service workflow composition
through methods for modeling application-specific error
and execution times. We evaluated our system in many di-
mensions, and overall, our results show that the inclusion
of such cost models contributes insignificantly to the over-
all execution time of our workflow composition algorithm,
and in fact, can reduce its overall time through pruning un-
likely candidates at an early stage. We also showed that our



adaptive accuracy parameter adjustment is effective for sug-
gesting relevant values for dynamically reducing the size of
data.

As we seek to further our development of this system,
we are aware of features that have not yet been investi-
gated or implemented. One area is service scheduling on
distributed heterogeneous resources. The problem, which
is inherently NP-Hard, has received much recent attention.
While many heuristics have been developed to address this
issue, integrating novel features such as partial workflow
caching and migration adds complexity to the problem. We
plan to investigate the support for these aspects and develop
new heuristics for enabling an efficient and robust sched-
uler.
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