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Abstract

A myriad of recent activities can be seen towards dynamic
workflow composition for processing complex and data in-
tensive problems. Meanwhile, the simultaneous emergence of
the grid has marked a compelling movement towards making
datasets and services available for ubiquitous access. This
development provides new challenges for workflow systems,
including heterogeneous data repositories and high process-
ing and access times. But beside these problems lie oppor-
tunities for exploration: The grid’s magnitude offers many
paths towards deriving essentially the same information al-
beit varying execution times and errors. We discuss a frame-
work for incorporating QoS in a dynamic workflow compo-
sition system in a geospatial context. Specific contributions
include a novel workflow composition algorithm which em-
ploys QoS-aware apriori pruning and an accuracy adjust-
ment scheme to flexibly adapt workflows to given time re-
strictions. A performance evaluation of our system suggests
that our pruning mechanism provides significant efficiency
towards workflow composition and that our accuracy adjust-
ment scheme adapts gracefully to time and network limita-
tions.

1 Introduction

Technology has paved way for the development of in-
creasingly advanced devices, which have led to a deluge of
raw data being accumulated in a number of scientific fields.
The lack of a unified and intuitive interface for access, anal-
ysis, and manipulation of such large-scaled datasets induce
considerable difficulties for scientists and engineers. Obtain-
ing certain information, for instance, may require a nontrivial
composition of a series of data retrieval and process execu-
tions. To alleviate some of these challenges, scientific work-
flow management systems [1, 12, 13, 6, 19, 20, 14] emerged
and have enabled scientists to compose complex workflows
with automatic scheduling and execution.

Recently, grid computing has helped propel a movement

towards making datasets and computing services† even more
widely available. The result is a high number of distributed
data repositories storing large volumes of datasets over links
with potentially high latency and access costs. In these sce-
narios a workflow’s overall execution time can be impacted
by the high access costs of moving grid-based datasets. Of-
ten, there are multiple ways of answering a given query, using
different combinations of data sources and services. Some
combinations are likely to result in higher cost, but better ac-
curacy, whereas other options might lead to quicker results,
but lower accuracy. This could be because some data col-
lection methods involve higher resolution than others, or be-
cause some datasets are available at servers with lower-access
latencies than others. Similarly, data reduction methods, such
as sampling, can speed up the time for remote retrieval and
computations, but will likely lower the accuracy. Meanwhile,
different users interacting with the query framework can have
different requirements. Some users may want the answers
the fastest, some may demand the most accurate answers,
and others might prefer the faster of the methods which can
meet certain accuracy constraints. It will be highly desirable
if a workflow composition system can incorporate user con-
straints and preferences. In other words, we want to alleviate
the users from the need of understanding the cost and accu-
racy tradeoffs associated with different datasets and services
that could be used to answer a query.

This paper presents a framework for workflow compo-
sition that supports user preferences on time and accuracy.
Our framework includes models for assessing cost associated
with retrieving each dataset or executing any services on a
given input. Similarly, we take as input models that predict
accuracy associated with the results of a particular service,
as a function of the accuracy of the data input to the service.
User-specified constraints on accuracy and cost are also taken
as input. The system automatically composes workflows
while pruning candidates that cannot meet the constraints.

The uses for our proposed framework is three-fold. First,
the integration of cost to our workflow composition algorithm
allows the system to support user constraints. Secondly, these

†Throughout the paper we use process and service interchangeably as
web service deployment of processes has become widely embraced by the
grid community.



constraints increase the efficiency of our workflow composi-
tion algorithm by enabling the pruning of workflows at an
early stage if QoS constraints are not met on the apriori prin-
ciple. Lastly, we enable opportunities for service develop-
ers to expose parameters such that, when tuned, can affect
the execution time and accuracy of the composed workflows,
e.g., the sampling rate in a data reduction service. Given time
restrictions or such physical limitations as low network band-
width, our system is capable of dynamically suggesting rec-
ommended values for the exposed accuracy parameters in or-
der to maximize the user’s expectations. To the best of our
knowledge, ours is the first automatic grid workflow compo-
sition system with these capabilities.

This framework has been incorporated in a system we pre-
viously developed [3] which supports high-level information
querying of raw datasets from scientific domains. This was
done through a combined support of keyword processing,
domain-specific metadata indexing, and automatic workflow
composition. Although our system is general, this particular
implementation has been in the context of geospatial data.
Here, data sources ranging from satellites to environmental
sensors, which continuously produce readings, generate mas-
sive datasets that are typically stored in their original low-
level formats on disks across networks. Likewise, access and
manipulation of these datasets are provided through grid ser-
vices that are made, in most cases, publicly available.

Figure 1. System Overview

Our performance evaluation shows that the additional cost
model induces negligible overhead, and in fact, improves the
overall execution time of the algorithm through early work-
flow pruning. We also devised experiments to show the sys-
tem’s efficacy in meeting user constraints and in the provision
of robustness under varying network bandwidths, which is
often prevalent in grid environments. Our system was evalu-
ated under a real grid environment against user constraints on
time as well as network bandwidth limitations. In the worst
case in our experiments, we observed an average deviation

of 14.3% from the desired time constraints and 12.4% di-
gression from the ideal expectations amidst varying network
bandwidths. The remainder of this paper is organized as fol-
lows. An overview of our system is presented in Section 2.
In Section 3 we discuss technical details of our cost model
and workflow composition algorithm. An evaluation of the
system is given in Section 4, and a comparison of our work
with related research efforts follows in Section 5. Finally, we
conclude and discuss future directions in Section 6.

2 System Overview

A conceptual view of our system is shown in Figure 1. We
present a quick overview of each component’s requirements
while detailed descriptions can be found in [3]. First, seman-
tic descriptions of the available data and services including
their relationships must be provided to the system. In our
case, for geospatial datasets, their metadata is specified in
CSDGM (Content Standard for Digital Geospatial Metadata)
as recommended by the Federal Geographic Data Committee
[7]. CSDGM annotates data files with such descriptions as
area coverage, date of creation, coordinate system, etc. Our
processes are in forms of web services — their interface is
described in WSDL [4].

In addition, our metadata also includes domain informa-
tion that will aid in supporting autonomous determination of
workflow correctness such as dependencies and context suit-
ability. Effective classification of datasets and services along
with a description of their relationships will help filter the set
of services to those suitable for execution. The standard on-
tology descriptor, Web Ontology Language (OWL) [5], is uti-
lized denote relationships among domain concepts, datasets,
and services. The ontology, shown in Figure 2, is simple as
compared to geospatial specific ontologies [15]. However, its
generality theoretically allows us to easily port our system to
other domains (although, we have not yet attempted this).

Domain

Concepts

Services Data

derivedFrom

derivedFrom derivedFrom

needsInput

derivedFrom

Figure 2. Ontology for Domain Specific Se-
mantic Description

Among our system’s goals, one is to provide support for
high-level user queries, which implies that a somewhat so-
phisticated query parser should be included. Specifically,
this component parses a query into relevant concepts in
our scientific domain, and when available, substantiates the



parsed concepts with user given values. The QoS con-
straints, if available, are input by the user with the keyword
pairs: QoS:Time=seconds and (QoS:ErrConcept=concept,
QoS:Err=value). The latter pair for applying error restric-
tion is important to note, since workflows may involve mul-
tiple error models. For instance consider a service such that,
when given an aerial image of a city and corner coordinates,
crops and returns a new image with the specified boundaries.
Here, errors can include the resolution of the cropped image
or measurement discrepancies involving the actual cropping,
e.g., the cropping service is accurate up to ±5cm. Multiple
error constraints may be coupled together in the same query.
In this case, a user might demand:

‘‘crop an aerial image of Columbus, Ohio
with northbound=(x,y), southbound=(x,y), ...
(QoS:Time=120s AND
(QoS:ErrConcept=resolution, QoS:Err=90ppi) AND
(QoS:ErrConcept=perimeter, QoS:Err=+-5cm))’’

It is worth noting that if only one constraint is given, then
system attempts to abide the restriction while optimizing the
undefined constraint, and that if neither is provided, the sys-
tem will execute the workflow containing the lowest error.
The user may also request that all workflows meeting the
constraints be returned. In this case the user is given time
and error predictions of each workflow, and he/she selects
which to execute. Given this well-structured query, appropri-
ate services and datasets must be selected for use and their
composition is reified dynamically through consultation with
the domain ontology. Through this process, the workflow
construction engine enumerates a set of valid workflow can-
didates such that when each is executed, returns a suitable
response to the query.

From the set of candidates, the workflow construction en-
gine must then examine the cost of each in order to deter-
mine a subset that meet user constraints. Additionally, this
component can dynamically adjust accuracy parameters in
order to meet expected time constraints set by the user. Al-
though shown as a separate entity for clarity, the pruning
mechanism is actually pushed deep within the workflow con-
struction engine. The remaining candidate set is sorted top-
down according to either the time or accuracy constraint (de-
pending on preference) to form a queue. The execution of
workflows is carried out and the presence of faults within a
certain execution, caused by such factors as network down-
time or data/process unavailability, triggers the next queued
workflow to be executed to provide the most optimal possible
response.

3 Problem Statement and Technical Details

In practice most scientific workflows can be expressed as
directed acyclic graphs where the vertices denote services
and data elements and directed edges represent dependen-
cies. Workflows can be also recursively described recursively
as follows: Given some arbitrary dataset, D and a set of ser-

vices S, a workflow w is defined

w =


ε

d

(s, Ps)

such that terminals ε and d ∈ D denote a null workflow and
a data instance respectively, and nonterminal (s, Ps) ∈ S is
a tuple where s denotes a service with parameter list Ps =
(p1, . . . , pk) and each pi is itself a workflow. Then given a
set of workflows Wq = {w1, . . . , wn} capable of answering
some user query q, our goal is to identify some subset Rq ⊆
Wq such that each workflow r ∈ Rq either meets or exceeds a
user’s QoS constraints, namely, processing time and accuracy
of results.

3.1 Modeling Workflow Cost

Our previous work [3] showed that it was feasible to ex-
haustively generate all workflows capable responding to a
query in an efficient manner. In fact, we demonstrated that
this enumeration process was conservatively upper bounded
by Depth-First Search. The enumeration algorithm, however,
did not take into account pruning mechanisms and thus un-
able control the growth rate of Wq (the set of candidates) as
well as determining each workflow’s quality. To this end, we
propose that the workflow’s time cost is estimated by

T (w) =


0, if w = ε

tnet(d), if w ∈ D
tx(s, Ps)+ if w ∈ S
tnet(s, Ps) + max

pi∈Ps

T (pi),

If workflow w is a base data element, then w = d, and the
cost is trivially the network transmission time, tnet, taken for
this element. When w is a service, then w = (s, Ps), and its
time can be summarized as the sum of the service execution
time tx, network transmission time of its product, and, recur-
sively, the maximum time taken by all of its parameters. The
second cost function, E(w), represents the error estimation
of a given workflow.

E(w) =


0, if w = ε

σ(d), if w ∈ D
σ(s, Ps) + max

pi∈Ps

E(pi), if w ∈ S

Due to the heterogeneity of datasets, processes, and precision
of measuring intruments, it is expected that disparate work-
flows will yield results with varying measures of accuracy.
Again, at the base case lies with the expected error of a par-
ticular dataset, σ(d). An error value can also be attributed
to a service execution, σ(s, Ps). For instance, inaccuracies
will be introduced if an extrapolation service is used predict
an expected value. Moreover, the errors introduced in earlier
stages of the execution path must be propagated towards the
result. σ(d) and σ(s, Ps) must thus be provided and evalu-
ated on a per-domain basis since these measures are applica-
tion sensitive. In both models the value of a NULL workflow,
ε, is trivially 0.



The obvious goal is providing prudent and reliable mea-
sures since cost is the determining factor for pruning work-
flow candidates. Furthermore, the online computation of cost
should only require diminutive overhead. For each service,
we are interested four separate models: The T (w) term itself
involves the implementation of three distinct models for ser-
vice execution time (tx), network transmission time (tnet),
and, implicitly, an estimation of output size (sized). For
tx, we sampled service runtime by controlling various sized
inputs and generating multi-regression models. sized was
computed on a similar basis (note that sized is known for
files). The network transmission time tnet was approximated
as the ratio of sized over bandwidth between nodes that host
each service or data. Regression, however, cannot be used to
reliably capture the capricious nature of an error model. It de-
pends heavily on the application’s mechanisms and is largely
domain specific. Thus, our model must capture arbitrarily
complex equations given by domain experts.

3.2 An Example Error/Accuracy Model

We present an error model through the geospatial appli-
cation of water level derivation. Envision that a user is in-
terested in water levels pertaining to a point in some body
of water. One method to answer this query involves gath-
ering data from multiple gauge stations, which are typically
situated along the shorelines. Suppose we choose K differ-
ent gauge stations for interpolation, the queried water level,
ZWL can be obtained with

ZWL =
Z1/d

2
1 + . . .+ ZK/d

2
K

1/d21 + . . .+ 1/d2K

where Zi denotes water level information at the ith gauge
station and di represents the its distance from the interpolated
point. The estimated error at the interpolated point, σZWL

,
would be given by

σZWL
=

√√√√ K∑
i=1

(
∂ZWL

∂Zi
× σZi

)2

+

K∑
i=1

(
∂ZWL

∂di
× σdi

)2

where σZi
denotes the vertical reading error at the ith gauge

station and σdi is its distance to the queried point.
In our framework the former equation for interpolation

would be deployed as a service onto the grid, and the lat-
ter error model is appended to the service’s description. In an
effort to keep the error models as lightweight as possible, we
maintain some data locally, such as the average σZi

values
for each gauge station.

3.3 Workflow Enumeration and Pruning

As previously mentioned, our workflow enumeration (Al-
gorithm 1) is a glorification of Depth-First Search‡. Starting
from the targeted domain concept, we explore each depen-
dent path in the given ontology until it leads to a sink (base

‡Details on query parsing, the handling of immediate data values, and
data identification can be found in [3]

data or NULL node). Every concept (intermediate or target)
can be realized by various datasets or services. (Line 6) ob-
tains a set of data or service nodes towards the derivation
of some domain concept. Each element in this set marks a
potential workflow candidate either in the direction of avail-
able data or a service product. In the former case (Line
8) w is a base data workflow and immediately considered
for inclusion. The latter case (Line 11) considers the ser-
vice at-hand along with its parameters. Each service pa-
rameter is essentially a new subtarget concept in our ontol-
ogy, and consequently, the algorithm is called recursively to
solve for a set of its subworkflows. For instance, consider
a service workflow with two parameters of concepts a and
b: (s, (a, b)). Assuming that target concepts a and b are
derived using some set of workflows Wa = {wa1 , wa2} and
Wb = {wb1}, then the workflows derivable from s includes
Ws = {(s, (wa1 , wb1)), (s, (wa2 , w

b
1))}. To clarify, if every

service parameter can be substantiated with at least one sub-
workflow, then the full set of workflow compositions is es-
tablished through a cross product of its derived parameters
(Line 23). Each element from the cross product is then cou-
pled with the service and considered for inclusion.

Algorithm 1 enumWF(target, QoS)
1: W ← ∅
2: /* static array for memoization */
3: global subWorkflows[. . . ]
4:
5: /* B denotes the set of all data/service elements that can

be used to derive target concept */
6: B ← derives(target)
7: for all β ∈ B do
8: if β ∈ D then
9: w ← data(β)

10: W ← QoSMerge(W,w,∞,∞, QoS)
11: else
12: /* β ∈ S */
13: /* Pβ denotes the set of service’s params */
14: Pβ ← getServiceParams(β)
15: ∆← ∅
16: for all p ∈ Pβ do
17: if exists(subWorkflows[p.concept]) then
18: ∆← ∆ ∪ subWorkflows[p.concept]
19: else
20: ∆← ∆ ∪ enumWF(p.concept, QoS)
21: end if
22: end for
23: Params← crossProduct(∆)
24: for all pm ∈ Params do
25: w ← srvc(β, pm)
26: W ← QoSMerge(W,w,∞,∞, QoS)
27: end for
28: end if
29: end for
30: subWorkflows[target]←W
31: return W

When a workflow becomes a candidate for inclusion,
QoSMerge (Algorithm 2) is invoked to provide the decision:



Algorithm 2 QoSMerge(W,w, t′, e′, QoS)
1: /* both QoS constraints are met */
2: if T (w) ≤ QoS.T ime ∧ E(w) ≤ QoS.Err then
3: /* insert w in QoS sorted position (not shown) */
4: return (W ∪ w)
5: end if
6: /* convergence of model estimations */
7: if |T (w)− t′| ≤ CT ∧ |E(w)− e′| ≤ CE then
8: /* prune w by excluding from W*/
9: return W

10: else
11: α← getAdjustableParam(w)
12: γ ← suggestParamValue(α,w,QoS)
13: /* wγ is param adjusted version of w */
14: wγ ← w.setParam(α, γ)
15: return QoSMerge(W,wγ , T (w), E(w), QoS)
16: end if

prune, include as-is, or modify workflow accuracy. For sim-
plicity, we consider a single error model in this algorithm,
and hence, just one adjustment parameter. In practice work-
flows may involve various error aspects for consideration
such as the example given in Section 2.

QoSMerge inputs the following arguments: (1) W , the set
of workflow candidates, (2) w, the current workflow under
consideration, (3) t′ and (4) e′ are the predicted time and er-
ror values of the workflow from the previous iteration, and
(5) QoS is the QoS object from the original query. In sum-
mary this algorithm merges the given workflow candidate, w,
for with the result set W if it meets the QoS time and error
constraints. If either constraint is not met, then the system
to provides a suitable value for α, the adjustment parameter
of w, given the QoS. Currently, suggestParamValue derives
its value by inversing the time model, T (w) to solve for the
desired parameter given the constraints.

Taken with the suggested parameter, the procedure is in-
voked recursively on the adjusted workflow, wγ . After each
iteration, w is adjusted, and if both constraints are met, re-
turned for inclusion. However, when the algorithm detects
that the modifications to w provide insignificant contribu-
tions to its effects on T (w) and E(w) then w is subsequently
pruned. This condition is shown on (Line 7) of Algorithm
2, and convergence thresholds CT and CE are predefined
per service. The values of t′ and e′ of the initial QoS-
Merge call on (Lines 10 and 26) of Algorithm 1 are set to
∞ for dispelling the possibility of premature convergence.
When either QoS.Time or QoS.Err are not given by the user,
their respective models are actually never invoked, and QoS-
Merge becomes the trivial procedure of immediate inclusion
of workflow candidate w. In Algorithm 2, this is equivalent
to assigning the QoS.∗ constraints to∞.

3.4 An Example Query

The example query is consistent with the error modeling
example presented in Section 3.2.

‘‘return water level of at (482593, 4628522) on
01/30/2008 at 00:06’’

In our system, this query may be solved in two service work-
flow directions, i.e., the target concept of water level con-
tains two distinct service nodes for derivation. One approach
employs services to retrieve Deep Web data from some K
nearest water gauge stations to the queried location and in-
terpolates their readings for a more accurate result. Another
method consults a water surface simulation model, whose ac-
cess is made available over the grid.

The following is the actual output from our system given
the above query. The values within [. . . ] are the time and
error predictions made by our system models. The actual ex-
ecution times of both workflows are 3.251 sec for w1 and
1.674 sec for w2. Note that QoS constraints were not set as
to show the comprehensive workflow candidate set with their
estimated costs without the effect of pruning. With pruning,
if QoS.Time was assigned a value of 2.0, then w1 would have
been discarded at the time of composition of its initial work-
flow, SRVC.GetGSListGreatLakes(NULL).

w_1 =
[t_total=3.501, err=0.004
--> t_x=1 t_net=0 d_size=0 ]
SRVC.getWL(
X=482593, Y=4628522, StnID=
[t_total=2.501, err=0.004
--> t_x=0.5, t_net=0, d_size=0]
SRVC.getKNearestStations(
Long=482593, Lat=4628522, ListOfStations=
[t_total=2.01, err=0
--> t_x=2.01 t_net=0 d_size=47889]
SRVC.GetGSListGreatLakes(NULL)

RadiusKM=100, K=3
)

time=00:06, date=01/30/2008
)

w_2 =
[t_total=2.00, err=2.4997
--> t_x=2 t_net=0 d_size=0]
SRVC.getWLfromModel(
X=482593,Y=4628522,time=00:06,date=01/30/2008

)

4 Experimental Results

Two main goals are addressed in our experiments: First,
to assess the overhead of workflow enumeration and the im-
pact of pruning. The second set of experiments focused on
evaluating our system’s ability to consistently meet QoS con-
straints.

For our experiments, we employ three nodes from a real
grid environment. The local node runs our workflow system,
which is responsible for composition and execution. An-
other node containing all needed services is located within
the Ohio State University campus on a 3MBps line. Finally,
a node containing all datasets is located in another campus,
Kent State University, about 150 miles away. Here the avail-
able bandwidth is also 3MBps.

4.1 Overheads of Workflow Enumeration

In the first experiment, we want to show that the overhead
introduced by the cost model is minimal. We generated a syn-



thetic ontology capable of allowing the system to enumerate
thousands of workflows for some arbitrary query. Having this
many workflow candidates is unlikely in practice, but serves
as a way for us to evaluate scalability (shown in Figure 3).
This was repeated for an increasing number of candidates
(i.e., |W | = 1000, 2000, . . .) on 4 different situations (solid
lines) without pruning (i.e., the worst case scenario where all
|W | workflows meet any given constraint). The four settings
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Figure 3. Cost Model Overhead and Pruning

correspond to user queries with (a) no QoS constraints, (b)
only error constraints, (c) only time constraints, and (d) both
constraints. Naturally, enumeration algorithm runs in pro-
portional time to the number of models supported. It is also
expected that the time cost model itself outweighs the error
model as it evaluates three distinct predictions, tx, tnet, and
sized. To evaluate our algorithm’s efficiency, we altered our
previous experimental setting to contain exactly one work-
flow within each candidate set that meets both time and error
constraints (all other candidates should be pruned in the early
stages of workflow composition, which corresponds to the
best case). For each setting of |W | + 1, the algorithm now
prunes |W | workflows (dashed line). The results show that
the pruning algorithm is as efficient as, and later, begins to
outperform the no-cost model since the amount of subwork-
flows to consider is minimized.

Table 1. Experimental Queries
Query1 “return surface change around (482593,

4628522) from 07/08/2000 to 07/08/2005”
Query2 “return shoreline extraction at (482593,

4628522) on 07/08/2004 at 06:18”

4.2 Meeting QoS Constraints

Queries 1 and 2 (Table 1) are designed to demonstrate
QoS management. Specifically, Query1 must take two digi-
tal elevation models (DEM) from the given time periods and
location and output a new DEM containing the difference

in land elevation. The shoreline extraction in Query2 in-
volves manipulating the water level and a DEM for the tar-
geted area and time. Although less computationally intense
thanQuery1, execution times for both are dominated by data
movement.
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20 40 60 80 100 120 140 160

Allowed Execution Time (sec)

20

40

60

80

100

120

140

160

180

200

A
c
tu

a
l 
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

CTM filesize=125mb

CTM filesize=250mb

Expected

(smpl=1.0)

(smpl=1.0)

 40  80  120  160

Allowed Execution Time (sec)

0.4

0.6

0.8

1

S
a

m
p

lin
g

 R
a

te

125mb
250mb

Figure 5. Time Expectations for Query 2

This becomes problematic for low time constraints, but
can be mitigated through data reduction, which we imple-
ment via sampling along each of the DEM’s dimensions. In
both queries the sampling rate is the exposed accuracy ad-
justment parameter, and the goal of our system is to suggest
the most appropriate sampling rates such that the actual ex-
ecution time is nearest to the user allowance. All services
involved in these queries have been trained to obtain predic-
tion models for cost estimation.

Figures 4 and 5 show the actual execution times of each
query against user-allowed execution times. The dashed line
which represents the end-user’s expectations is equivalent to
the time constraint. The DEM sampling rate, which is em-



bedded in the figures, is inversely proportional to the error
of our workflow’s payload. A juxtaposition of the outer and
embedded figures explains why, in both results, the actual
execution time of the workflow pertaining to smaller DEMs
flattens out towards the tail-end: at the expected time con-
straint, it has already determined that the constraint can be
met without data reduction.

The gap observed whenAllowedExecutionT ime = 100
in Figure 4 is exposing the fact that the system was some-
what conservative in suggesting the sampling rate for that
particular point, and a more accurate workflow could prob-
ably have been reached. Situations like these exist due to
imprecisions in the time model (we used multi-linear regre-
sion). The implementation of the models, Between the two
DEM size configurations, Query1 strays on an average of
15.65 sec (= 14.3%) from the expected line and Query2 by
an average of 3.71 sec (= 5.2%). Overall, this experiment
shows that our cost model and workflow composition scheme
is effective. We obtained consistent results pertaining to error
QoS, but these results are not shown due to space constraints.
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Figure 6. Varying Bandwidth for Query 1

The next experiment shows actual execution times against
varying bandwidths of our network links. Ideal expectations
in this experiment are much different than the linear trend ob-
served in the previous experiment. When bandwidth is low,
sampling is needed to fit the execution within the the given
time constraint (we configured this at 350 sec in both ex-
periments). Next, when the bandwidth is increased beyond
the point where sampling is necessary, we should observe
a steady drop in actual execution time. Finally, this declin-
ing trend should theoretically converge to the pure execution
time of the services with ideal (zero) communications delay
and network overhead.

As seen in Figures 6 and 7, the actual execution times lie
consistent with the expected trends. Between the two DEM
sizes, Query1 strays on average 13.79 sec (= 6.7%) from
the ideal line and Query2 on average 16.05 sec (= 12.4%).
It is also within our expectations that the actual execution
times generally lie above the ideal lines due to communica-
tion overheads and actual network fluctuations. We believe

that our experimental results suggest that the system pro-
vides and maintains robustness against user defined cost as
well as computing costs within dynamic grid environments.
Specifically, the accuracy parameter suggestion algorithm
was shown to gracefully adapt workflows to restrictions on
time and networks.
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Figure 7. Varying Bandwidth for Query 2

5 Related Works

The Data Grid opened up various opportunities for the sci-
entific community to share resources including, among oth-
ers, large-scaled datasets and services. This prompted the
emergence of scientific workflows for modeling and manag-
ing complex applications and processes for data and infor-
mation derivation. Pioneering works towards this front in-
clude Chimera [8], which supports detailed recording of data
provenance and enables the reuse of well-designed work-
flows to generate or recreate derived (virtual) data. Other
systems including Kepler [1], Taverna [13], and Triana [12],
like ours, heavily utilize domain specific metadata. These
allow domain experts to define workflows through intuitive
interfaces, and the workflow components are then automati-
cally mapped to the grid for execution.

The direction towards automatic discovery, scheduling,
and execution of scientific workflows has been reified
through a number of efforts in dynamic workflow compo-
sition [10, 2, 17, 18, 9], which is a subset of the AI Plan-
ning Problem. Our framework again poses no exception, as
our domain ontology and enumeration algorithm may also
be typified as planning components, leading to the goal of
derived data. In particular, Pegasus [6, 11] supports creation
and execution of highly complex workflows over the grid.
This system automates the management of grid resources and
mapping of workflow components for execution.

While our system adopts strongly established features
from the above works, it has the following distinguishing
characteristics. We envision an on-demand domain level
querying framework that is applicable to users from naı̈ve



to expert. Data derivation is made available immediately
through a high-level keyword interface and abstraction of
user-level workflow creation via automatic service composi-
tion. The aforementioned workflow managers require some
user intervention involving definition of an abstract work-
flow template (e.g., Pegasus) or recondite rules and goals for
the planning algorithms in [14, 20, 16]. Another feature of
our work involves the adaptability to QoS constraints. Some
workflow managers, such as Askalon [19], attempt to min-
imize the execution time of workflows by employing per-
formance predictors which factor into scheduling decisions.
Our system differs in that the overall goal is not specifically
the minimization of execution time. Instead, we focus on an
accuracy-oriented task where workflow execution times may
be manipulated to fit within the required QoS through error-
level adjustment.

6 Conclusion and Future Directions

The work reported herein discusses our approach to bring
QoS awareness in the form of time and accuracy constraints
to the process of workflow composition. Our framework,
which includes methods for error and execution time predic-
tion, employs the apriori principle to prune potential work-
flow candidates. Our results show that the inclusion of such
cost models contributes negligible overhead, and in fact, can
reduce the overall workflow enumeration time through prun-
ing unlikely candidates at an early stage. In addition, our
dynamic accuracy parameter adjustment offers robustness by
allowing workflows to be flexibly accurate for meeting QoS
constraints under varying network speeds. Our system was
evaluated against actual user constraints on time and the net-
work bandwidth limitations. In its worst case, our system
maintained actual execution times that deviate no more than
14.3% from the expected values on average, and no worse
than 12.4% from the ideal line when presented with varying
network bandwidths.

The dominant bottleneck with any workflow manager is
process execution and data transmission. We believe that this
problem can be mitigated by caching partial workflow results
on intermediate nodes in the grid. Interferences with our cost
models arise as we attempt to model a series of implementing
mechanisms, including data migration, workflow redirection,
and fault handling.
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