
Evaluating and Optimizing Indexing Schemes for a
Cloud-based Elastic Key-Value Store

David Chiu
Washington State University

david.chiu@wsu.edu

Apeksha Shetty
Ohio State University

shetty@cse.ohio-state.edu

Gagan Agrawal
Ohio State University

agrawal@cse.ohio-state.edu

Abstract—Cloud computing has emerged to provide virtual, pay-
as-you-go computing and storage services over the Internet, where
the usage cost directly depends on consumption. One compelling
feature in Clouds is elasticity, where a user can demand, and be
immediately given access to, more (or less) resources based on
requirements. However, this feature introduces new challenges in
developing application and services. In this paper, we focus on the
challenges in data management in Cloud environments, in view of
elasticity. Particularly, we consider an elastic key-value store, which
is used to cache intermediate results in a service-oriented system, and
accelerate future queries by reusing the stored values. Such a key-
value store can clearly benefit from the elasticity offered by Clouds,
by expanding the cache during query-intensive periods. However,
supporting an elastic key-value store involves many challenges,
including selecting an appropriate indexing scheme, data migration
upon elastic resource provisioning, and optimizations to remove
certain overheads in the Cloud.

This paper focuses on the design of an elastic key-value store.
We consider three ubiquitous methods for indexing: B+-Trees,
Extendible Hashing, and Bloom Filters, and we show how these
schemes can be modified to exploit elasticity in Clouds. We also
evaluate various performance aspects associated with the use of
these indexing schemes. Furthermore, we have developed a heuristic
to request elastic compute resources for expanding the cache such
that instance startup overheads are minimized in our scheme. Our
evaluation studies show that the index selection depends on various
application and system level parameters that we have identified.
And while we confirm that B+-Trees, which pervade many of today’s
key-value systems, would scale well, we show cases when Extendible
Hashing would outperform B+-Trees.

I. INTRODUCTION

The Cloud has been hailed as a reliable, scalable, on-demand
source of computation and storage provided over the Internet.
Among many Cloud providers (including Azure1 and Google
App Engine2), Amazon’s Elastic Compute Cloud (EC2)3 has
also emerged as a so-called Infrastructure as a Service (IaaS)
provider as it allows users complete control over resources. One
of the most important facets of EC2 is its ability to allow the
users to instantly scale their resource requirement up according to
demands. When exploited optimally, this elastic compute aspect
lets users avoid over- or under-provisioning of resources [1], a
highly desirable feature that had eluded conventional distributed
environments.

1Azure Services Platform, http://www.microsoft.com/azure
2Google App Engine, http://code.google.com/appengine
3Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2

The emergence of the elastic computing paradigm has been
timely. For example, consider a scenario where the demand for
various service-oriented applications is not always constant, and
certain phenomena could lead to an increase in the number of
requests, which would likely reduce availability of the service.
One way to combat this issue would be to dynamically acquire
more computing resources from the Cloud and replicate the
service application over the newly allocated nodes. In general,
while elasticity can be beneficial for many applications and use-
scenarios, it also imposes significant challenges in the devel-
opment of applications or services. Some recent efforts have
specifically focused on exploiting the elasticity of Clouds [5],
[7], [18] for various application classes.

One prominent issue that has not yet received much attention
is management of data while leveraging elasticity. In this paper,
we focus on the challenges of managing an elastic key-value
store in a Cloud environment. Though several Cloud-based key-
value storage systems have been developed in recent times [4],
[17], [8], [13], they have not been considered in the presence of
elastic computing. We have developed an elastic key-value store,
which is motivated by the challenges toward accelerating service-
oriented computations on the Cloud. Our elastic store caches
intermediate results of services and using them for future compu-
tations. Such a cache or key-value store can clearly benefit from
elasticity. For instance, an unexpected query-intensive period can
be responded to by a self-managed expansion of resources.

Our cache is created by a set of cooperating Cloud nodes, and
its design adheres to its underlying elastic environment. Maintain-
ing a fast and highly available cache in an elastic environment
is challenging, and a major contributor to the performance is
the data indexing scheme used on each of the cooperating
nodes. The reasons are two-fold: First, an appropriate indexing
scheme would clearly allow for fast random accesses to cached
data. Second, as our cache incrementally expands to meet load
requirements, portions of resident cached data must be migrated
to newly acquired Cloud nodes. The indexing mechanism, whose
performance often relies on the application, must then also be
conducive for rendering such migrations efficient.

In this paper, we have developed migration algorithms to sup-
port the use of three popular indexing schemes: B+-trees [2], [6],
Extendible Hashing [11], and Counting Bloom Filters [12], [21].
We chose to focus on these three schemes because they pervade

2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-0-7695-4395-6/11 $26.00 © 2011 IEEE

DOI 10.1109/CCGrid.2011.29

362

existing systems and are heavily documented in literature. Based
on our migration algorithms, we have compared the performance
obtained from these three methods. Besides developing migration
algorithms associated with different indexing schemes, we have
also optimized the caching scheme so that it would work as
unobtrusively as possible in the Cloud environment, with the aim
to minimizing the idle time (during the node expansion/migration
phase).

These indices were evaluated in terms of total time taken for
running an experiment and the time taken to migrate a set of data
records upon cache expansion. In cases where querying rates are
50 and 255 queries per time step, the overheads of data migration
and node allocation vary on average 44.8% and 30.8% of total
execution time, respectively. We also applied a simple heuristic
to speculate the prelaunching of EC2 nodes as a means to reduce
overhead during migration periods.

Our evaluation studies confirm that B+-Trees, which pervade
many of todays key-value systems, would scale consistently well.
Interestingly, we also observe instances when the Extendible
Hashing scheme could outperform B+-Trees. After optimizing
two of our indexing schemes, we observed a 4× and 14×
reduction in the overhead, respectively.

The remainder of this paper is organized as follows. In Section
II, we present the background of our cooperative elastic cache
design. In Section III, we present some basic background for
the three indexing schemes and discuss their implementation and
heuristics for optimization in the elastic cache. In Section V, we
and present the experimental evaluation. A discussion of related
works is given in Section VI. Finally, we conclude our work in
Section VII.

II. MOTIVATING APPLICATION: KEY-VALUE CACHE
ELASTICITY

In this section, we will describe the basic architecture of
the specific key-value store we have considered, which is a
cooperative cache. A main goal of the cache we are considering
is to provide fast access to the data, and this can be achieved
by caching all the data in the main memory. However, because
memory is a limited resource, overflowing into disk could cause
prohibitively long latencies. Leveraging on the Cloud’s elasticity,
we instead allocate on-demand node instances to handle overflow.

Our system, shown in Figure 1, is comprised of a set of Cloud
nodes, which consist of a coordinator node and cohort storage
nodes, indexed by consistent hashing. Users interface with the
coordinator using a simple key-value API. The coordinator is
responsible for several mechanisms: Upon a given request, the it
must first determine which cohort server node might contain the
data and route the query request to the identified cohort node.
During a hit cache on one of the cohort nodes, it sends the data
directly to the user. Conversely, on a miss, the coordinator invokes
the service application, S, for execution, then sends the results
to both the user and cache.

Coordinator

Cache Servers

Consistent
hashing

S

Service Execution

Queries

Results

Indexing

Indexing

Cache Miss

Fig. 1. Client-Server Architecture of the Elastic Cache

Initially, it may seem like a simple hashing mechanism would
suffice for identifying the cohort node responsible for storing
some data (k, v). However, because we are considering our
cache under an elastic environment, nodes may incrementally
(or decrementally) scale on demand. This dynamism renders
many hashing mechanisms useless, as an incredibly large number
of key-value pairs would require a rehash upon cohort node
membership changes.

To address this problem, consistent hashing [14] is being
employed on the coordinator due to its ability to quickly adapt
to nodes joining and leaving a cooperating system (indeed, it is
used extensively in highly volatile P2P systems among others).
Consider the example in Figure 2, which depicts a consistent
hashing system consisting cohort nodes A and B. The hash
range is circular (from 0 and r − 1), and consists of several
buckets placed randomly or strategically. Each bucket further
stores a pointer to a physical storage node. An auxiliary static
hash function, such as node = ∗clockwise succ(k mod r) can
be used to initially hash a key-value pair (k, v) onto the hash ring.
Then a (k, v) pair hashing onto 35, for instance, would follow
the ring to the closest succeeding bucket in clockwise fashion to
node A, referenced by bucket 75.

Aside from interfacing with the user, the coordinator is also
responsible for monitoring the cache’s status and when appropri-
ate, allocating Cloud nodes and scheduling for data splitting and
migration from the overflown node to the newly acquired node.
In Figure 2, we are further showing that node A is overflown,
and a new node, C, has been instantiated from the Cloud to
incrementally join our system. Assuming that the range between
(75, 8] on the hash ring is crowded with too many keys hashing
onto A, we can strategically place a new bucket such that a
substantial amount of keys in (75, 8] will be hashed into the new
node, C to alleviate the load on A, e.g., the bucket could be placed
at (75+8+r)/2. To complete the node membership process, the

363

75

r - 1
B8

25

A

C

Migrate {(k, v)|h(k) ∈ (75, (75 + 8 + r)/2]}

Fig. 2. Consistent Hashing Example

(k, v) pairs hashing into (75, (75+8+ r)/2] are finally migrated
to C.

Each cohort server employs an indexing scheme to facilitate
fast searches. The server stores the index together with the cached
data in memory to ensure efficient hit times. The specific indexing
scheme is application-dependent, however, and we choose to
evaluate three among the most widely used indexing schemes.
The choice of index on the cache server should impact the
node split and migration time, since the support of fast range
queries could quickly negotiate the data records that need to
be transferred. Moreover, the overall performance of the cache
is dependent on the speed of record retrieval and how quickly
it can determine a hit or miss. In the following section, we
present the background for three ubiquitous index structures: B+-
Tree, Extendible Hashing, and Bloom Filters. The performance
evaluation of node splitting and data migration in the presence
of these popular indexing schemes is a main focus in this paper.

III. INDEXING BACKGROUND AND ELASTIC INTEGRATION

A distinct indexing service has to be implemented on each
cohort node supporting the key-value server. We consider three
ubiquitous indexing schemes used in our cohort cache nodes
for facilitating key-value storage: B+-Tree [2], [6], Extendible
Hashing [24], and Counting Bloom Filters [12], [21]. To facilitate
cache elasticity, when a node overflows, we must migrate a subset
of its records to another node, which may be preexisting or newly
allocated. As the three schemes we have selected are inherently
dissimilar in structure and methods of operation, and thus make
compelling candidates for extension to an elastic environment and
performance evaluation.

In the rest of this section, we initially present the background
on each indexing mechanism, and then describe how we have
implemented the migration mechanism over the three indexing
schemes upon a node overflow.

A. B+-Trees

B-trees and its variant B+-trees are used extensively in many of
today’s systems. B+-tree is a multilevel indexing scheme, which
automatically adjusts the number of levels depending upon the
file size. In terms of access, it is a balanced data structure, where
all paths from the root to any leaf have the same length (akin to
binary trees, with approximately log2 n depth). The leaf nodes
of the B+-tree store the records in ascending order from left
to right, and all the leaf nodes are linked to the next and the
previous nodes, which was specifically designed to accelerate
range queries [9], [24].

The basic structure of B+-tree is as follows. Each node
contains a set of n keys and n − 1 child pointers. Ki are the
keys and Pi is the pointer to a tree node and Prj is the pointer
to a record’s physical location. All keys in the left branch of the
key K are less than or equal to the K and all keys in the right
branch are greater than the K. While searching, we follow the
appropriate branches based upon the comparison of the key with
the entries in the tree. In a process tantamount to searching a
binary tree, we start from the root and follow the left path if the
key is less than or equal to the root, else we follow the right path,
recursively.

Due to its support for fast range queries, we would expect the
B+-tree integration to be particularly auspicious for our consistent
hashing-based cache. Such fast accesses to ranges of data should
facilitate faster data migration upon node membership. Migration,
in this case, is comprised of deletions of keys in the range from
the smallest to half of the overflow node. Since B+-Tree contains
the keys sorted in ascending order from left to right, on the leaf
level, it is efficient to identify all keys that lie in the range and
delete them, as well as their associated data, from the memory
of the overflown node.

Algorithm 1 BT Migrate(kstart, kend)
1: . manipulate B+-tree index and transfer the keys in form of a string,
keys

2: end← false
3: . L = leaf initially containing kstart
4: L← btree.search(kstart)
5: while (¬end ∧ L 6= NULL) do
6: . each leaf node contains multiple keys
7: for all (k, v) ∈ L do
8: if k ≤ kend then
9: keys.append(k, v)

10: btree.delete(k)
11: else
12: end← true
13: break
14: end if
15: end for
16: L← L.next()
17: end while
18: return keys

The B+-Tree migration algorithm is shown in Algorithm 1.

364

Both kstart and kend are the inputs to this procedure, and they
denote the limits of the range to be migrated (again, typically
smallest key, and median key respectively). On Line 4, we find
the leaf containing kstart. Because all leaf nodes are linked, we
can sweep all leafs until kend has been reached or passed. Each
swept record is appended to a keys set and deleted (Lines 5 -
17). Finally, when a record is k > kend, we exit the loop and
return the set of keys needing migrated.

B. Extendible Hashing

Hash tables are another commonly used form of indexing,
which excels at offering O(1) exact-match key search times. The
tradeoff, however, is that hash tables are not well-suited to handle
range queries.

In most hash implementation, we assume that there exists a
hash function h(k) ∈ [0, B − 1], where B is the total number
of buckets in hash line. Each bucket contains a set of records
stored in memory or a set of pointers to records stored in
secondary memory. A hash function should ideally hash each
key to a distinct bucket, but this is seldom possible because the
key range is often much larger than B. Therefore, the buckets
typically allow for storing a set of records, but even so, they
can still overflow. To avoid this from happening, all hash tables
implement some form of collision reconciliation technique. A
simple technique is to have overflow chains, where overflown
records are stored in a linked list attached to the bucket. The
performance of this technique decreases linearly as the load factor
(ratio of number of records stored to the size of bucket) increases.

We can avoid this performance hit by using dynamic hashing
[10], where the number of buckets, B. can vary unlike the afore-
mentioned static hashing. In dynamic schemes, B is increased
whenever necessary. We have implemented a form of dynamic
hashing, namely, Extendible Hashing [11], which introduces a
concept known as directory— an array of pointers to the hash
buckets. The buckets themselves contain an additional array of
pointers to the records’ physical location.

Initially, each directory contains one bucket, but this is allowed
to grow whenever required. In Extendible Hashing, the length of
the directory is always a power of 2, which translates to doubling
the size of the directory size in each growing phase. However,
because multiple pointers can point to the same physical bucket,
the actual number of buckets can be ≤ to the size of the directory.
A hash function h(k) computes a binary sequence for each record
based on the search key, k, and the first i least significant bits, are
used to determine the bucket to which the record belongs. Thus,
when a directory contains 2i number of pointers to buckets the
actual number of buckets is ≤ 2i.

Searching for a key in an Extendible Hash table is a two-phase
process. First, the least significant i bits from the hash value of
the key and determine the bucket it belongs to. Finally, a linear
scan within the identified bucket is required to return its position,
if it is found. The searching time would expectedly increase as
the number of records per bucket increases. Conversely, higher

number of records per bucket would lead to fewer splits and
a smaller directory. As we alluded to earlier, while Extendible
Hashing offers constant-time exact match queries, range queries
will expectedly suffer because the hash function disrupts k’s
original locality.

To support migration, we implemented Extendible Hashing
such that we could dynamically specify the number of records per
bucket. Because Extendible Hashtables do not store the records
in any particular order, we linearly scan through each bucket and
delete keys that lie within the migration range.

Algorithm 2 EH Migrate(kstart, kend)
1: static H . bring extendible hashtable to scope
2: keys← {}
3: for x← 0 to 2i − 1 do
4: Dx ← H .getDirectoryAt(x)
5: for y ← 0 to |Dx| − 1 do
6: By ← Dx.getBucketAt(y)
7: for all k ∈ By|k ≥ kstart ∧ k ≤ kend do
8: keys← keys ∪ (k, v)
9: H .delete(k)

10: end for
11: end for
12: end for
13: return keys

In Algorithm 2, inputs kstart and kend again denote the
range of keys to be migrated. Initially, we traverse through all
directories, denoted by Dx, and for each directory, we follow the
pointer, y, to its corresponding bucket. Any key, k, which lies in
the range, [kstart, kend], is appended along with its data object,
v, to keys. Finally, keys is returned when all records have been
scanned through.

C. Counting Bloom Filter

Bloom Filters [3] are probabilistic data structures used to
quickly determine the membership of a record in a set. It consists
of a bit array of m bits and a set of j hash functions which
hashes each record to j different values. Generally, m� j, which
reduces the probability of the hash functions setting the same bit
for a record4. However, Bloom Filters are vulnerable to false
positives, but false negatives are not possible.

Insertions into a Bloom Filter are simple: apply the hash
functions to the key and set the corresponding bits. Similarly, we
can determine whether a record is present in the set by applying
each of the j hash functions to the data item and verifying
whether all the corresponding bits are set. If all the corresponding
bits are not set, then the data item is not present. However,
because false positives are possible, even if all the corresponding
bits are set, the record may still not be present, so a scan is
required after such a pseudo-hit. Fortunately, the false positive
rate has bound f = (1 − e(−jN/m))j , where j is the number of
hash functions, m is the length of the bit array, and N is the

4XLattice, http://xlattice.sourceforge.net/components/crypto/

365

number of set bits. Clearly, the false positive rate increases as
the number of inserts increases, but choosing a relatively large
m and independent hash functions can render f negligible [16].

Because the same bit could have been set for multiple records,
deletion in the traditional Bloom Filter is not possible. Indeed,
modifying the bit array could lead to false negatives which
are prohibitive. To support deletion, we implemented a variant,
Counting Bloom Filters [12], [21]. Each bit in the bit array is
associated with a 4-bit counter, which keeps track of the number
of records that set the bit, and enables the delete operation.

These structures are quite useful for applications requiring
fast of record existence (especially for testing non-existence). To
search for a record with key k, we first apply the j hash functions
to k. Secondly, we AND all bits from the bit array corresponding
to the locations hi(k)|i = (0, . . . , j). If this result is 1, then the
record may be present, and a scan is initiated to retrieve the
record. Otherwise, the record is non-existent. Because the linear
scan may be required for a hit, it invokes a costly overhead in
the case of false positives, but as we had mentioned previously,
low false positive rates can be ensured by having a large m and
independent hash functions.

The implementation of migration for CBF is also trivial. kstart
and kend are the inputs and they again represent the minimum
and maximum limits of the migration range. We start from the
minimum threshold and increment till the maximum threshold
and search for each key in the range and delete the keys that are
present. This makes migration time linear to the amount of keys
within [kstart, kend], albeit that check for non-existence is fast
and guaranteed (no false negatives).

IV. ELASTIC CACHE SUPPORT

We have implemented our system on EC2, and will describe
our system under its context. The Amazon Elastic Compute Cloud
(EC2) supports Infrastructure-as-a-Service (IaaS), allowing users
to allocate nodes on demand. EC2 nodes (instances) are virtual
machines that can launch snapshots of systems, i.e., images.
These images can be deployed onto various instance types (the
underlying virtualized architecture) with varying costs depending
on the instance type’s capabilities. For example, a Small EC2
Instance (m1.small), according to AWS5 at the time of writing,
contains 1.7 GB memory, 1 virtual core (equivalent to a 1.0-1.2
GHz 2007 Opteron or 2007 Xeon processor), and 160 GB disk
storage. AWS also states that the Small Instance has moderate
network I/O. As a baseline, we have chosen to only employ Small
instances in our implementation, although it should be noted
that instances bearing much more (or less) capabilities are also
available through Amazon.

During system execution, records may be continuously inserted
into the cache nodes, and an overflow on any of the nodes can
invoke incremental scaling. This process involves starting a new
EC2 node and migrating a subset of the data from the overflown

5AWS Instance Types, http://aws.amazon.com/ec2/instance-types

node to the newly allocated node using methods specified in
the previous sections. There are two phases of overhead in this
scheme: (1) instance allocation time, which can take up to several
minutes during peak times, and (2) data migration time, which
involves identifying the migration range and network transfer
time.

In our experience, instance allocation dominates data migration
time, and we implement a speculative pre-launching of instances
when a threshold, T , has been met. A background thread initiates
the pre-launching and eagerly migrates data from the fullest node
once the new node is booted. Our speculative threshold T is based
on the following observations. If the request rate is high, then T
should be lowered, as the nodes are likely to fill up faster, and
vice versa. If n is the node to insert some (k, v) pair, we use the
following to estimate n’s threshold:

T = c(n)/2 + δH × (||N || −R/δL)
where δL and δH are constants: the lowest and highest expected
querying rate respectively. R is the current request rate, c(n) is
capacity on node n, and ||N || is the total number of nodes in
our cooperative cache. As the number of nodes, ||N ||, increases
the threshold should also increase so as to delay the allocation
of new nodes. R/δL is used to normalize the current rate, R.

For instance, consider a configuration where c(n) = 5000,
δL = 50, δH = 250, and R = 100. Then for a cooperative system
containing 1, 2, 3, and 4 nodes, the respective thresholds would
be 2250, 2500, 2750, and 3000. Hence, T increases linearly by
δH for each node added in this scenario. Certainly, more robust
models can be employed here for speculation, but it is beyond
the scope of this work.

We use this threshold in our cache insertion algorithm, shown
in Algorithm 3. The identifiers used in Algorithm 3 are listed in
Table I.

TABLE I
LISTING OF IDENTIFIERS FOR ALGORITHM 3

Identifier Description
k A queried key

B = (b1, . . . , bp) The list of all buckets on the hash line
h(k) The hash function, which returns the closest

upper bucket to k
N = (n1, . . . , nm) The set of all nodes in the cooperative cache

n ∈ N A cache node
||n|| Current size of index on node n
dne Overall capacity on node n
||N || Number of nodes part of the cooperative cache

N
R Query intensity, i.e. queries per time step

In Algorithm 3, k and v are the inputs to the algorithm and
they denote the key and value object, respectively. On Lines 1-
3, the statically declared inverse hash map, NodeMap[...], the
ordered list of buckets, B, and the auxiliary consistent hash map,
h′, are brought into scope. The NodeMap[b] returns the node n
pointed by bucket b.

366

Algorithm 3 Speculative-Insert(k, v, δL, δH)
1: static NodeMap[. . .]
2: static B = (. . .)
3: static h′ : K → [0, r)
4: n← NodeMap[h′(k)]
5: T = c(n)/2 + δH × (||N || −R/δL)
6: if T < dne × 0.1 then
7: T ← dne × 0.1 . to avoid extremely low values of threshold
8: end if
9: if T > (dne × 0.75) then

10: T ← dne × 0.95 . to delay allocation of new nodes
11: end if
12: if ||n||+ sizeof(v) < T then
13: n.insert(k, v) . insert directly on node n
14: else if ||n||+ sizeof(v) > T then
15: . Launch threads t1, t2 which would execute the Lines 16 - 22
16: . find fullest bucket referencing n
17: bmax ← argmax

bi∈B
||bi|| ∧NodeMap[bi] = n

18: kµ ← µ(bmax)
19: ndest ← n.migrate(min(bmax), kµ)
20: . update structures
21: B ← (b1, . . . , bi, h

′(kµ), bi+1, . . . , bp) | bi < h′(kµ) < bi+1

22: NodeMap[h′(kµ))]← ndest
23: else
24: . n overflows
25: . Launch Thread t3 if t1 and t2 are not taking care of n and

execute Lines 16-22
26: end if
27: Speculative-Insert(k, v, δL, δH)

Lines 5-11 deal with threshold selection. The idle time caused
by migration can be reduced to zero if a good threshold is
selected, but selecting such a threshold is tricky, as a low value
could lead to higher number of instances being launched. This, in
turn, would not be optimal, as running extra instances would be
costly. Selecting a higher threshold could lead to higher idle times
because the node allocation is being initiated too late. Therefore,
the selection of a threshold is a tradeoff between lowering idle
times and optimizing the number of instances being initialized.

Returning to the algorithm, Line 5 of Algorithm 1 calculates
this threshold. In Lines 6-11, we check for two conditions; the
first condition increases the threshold initially to delay launching
of instances, whereas the second condition increases the threshold
after a certain instant, so that new instances would not be
initialized unnecessarily, which helps reduce cost.

In order to reduce idle times we need to parallelize the
execution of various parts of the code. It was empirically observed
that two instances generally reached the node capacity at the
same time, since our experiments issue random workloads. We
first introduce two threads, t1 and t2, that would initialize a new
node if required (Lines 15-22). If a node reaches capacity, dne,
then a third thread, t3, would handle the overflown node if neither
of the two threads were handling it already (Lines 24-25). Thus,
at any point there could be a maximum of 4 threads running
(including the main thread).

The three threads all perform the operation mentioned on Lines
17-22. On line 17, we identify the fullest bucket bmax referencing
n. On Lines 18-19, we migrate half the keys (from the minimum
to the median, kµ) from bmax. The migrate method returns a
reference to the destination node, ndest, which may be preexisting
or newly allocated. Finally on Lines 20-22, the statically declared
structures, NodeMap and B, are updated.

Retreating discussion back to the side of the cache servers, each
cohort node consists of the index, insert(), delete(), migrate(), and
search() methods. At any instance of time, the consistency of the
index needs to be maintained, which requires that the methods
modifying the structure of the index be synchronized. Hence,
insert(), migrate(), and delete() to acquire a lock on the cache
server instance at the start of the method and release it at the
end. Since search() is read-only, this method does not acquire
any locks.

V. EXPERIMENTAL RESULTS

In this Section, we evaluate the performance of our elastic
key-value cache on the Amazon EC2 Cloud. We also compare
the performance of the three indexing schemes.

A. Experimental Configuration

In all experiments, we used Small EC2 Instances from the
Amazon Cloud (1.7 GB of memory, 1 virtual EC2 core -
equivalent to 1.0 -1.2 GHz 2007 Opteron or 2007 Xeon Processor
on a 32 bit platform). Each instance was loaded with an Ubuntu
Linux Image and a cache server. Cache server basically contains
the indexing logic and for the results presented in this section,
only B+- tree was used.

We ran a real service application, Shoreline Extraction, a
geodetic Web service. Given the location, L, and the time of
interest, T , the service retrieves a data file representing the terrain
at location L, then interpolates this file with a water level reading,
measured at time T . The queries are submitted to the coordinator
node, and it tries to locate the results on the cohort cache nodes
based on the inputs from the query. If the result is present in
the cache, i.e., it is precomputed via some previous request, it is
retrieved and returned directly to the caller. In case of a miss, the
shoreline extraction service is invoked. The queries are submitted
randomly over 64K distinct possibilities for each service request.
Because we know the key range in advance, we have also set r,
the consistent hash function, to 64K.

We tested our system under varying query rates, we varied the
rate between 50 queries/time step and 255 queries/time step. At
each time step, we recorded the average (in seconds) and the
number of hits and misses. In order to regulate the integrity in
querying rates, we submitted query requests with the following
loop: Specifically, we invoke R queries per time step, and thus
each time step does not reflect real time. Note that the granularity
of a time step in practice, e.g., t seconds, minutes, or hours, does
not affect the overall hit/miss rates of the cache. At each time step,
we observed and recorded the average service execution time (in

367

for time step i← 1 to . . . do
R← current query rate(i)
for j ← 1 to R do

invoke shoreline service(rand coordinates())
end for

end for

number of seconds real time), the number of times a query reuses
a cached record (i.e., hits), and the number of cache misses.

B. Evaluation of Elastic Cache vs. Static Cache

We compared our cooperative elastic cache (co-op) against
static versions of our cache. The static caches are fixed at 2,
4, and 8 nodes (static-2 , static-4, and static-8
respectively), and cannot expand. Therefore, the static versions
implement LRU (Least Recently Used) replacement policy to
prevent overflow. For these experiments, all cache servers are
utilizing B+-Trees.

0 200 400 600 800

Time Step

0

20

40

60

80

100

M
is

s
R

at
e

(%
)

0

2

4

6

8

EC
2 N

odes Allocatedco-op nodes
co-op
static-2
static-4
static-8

(a) Querying Rate = 50 queries/timestep

0 200 400 600 800

Time Step

0

20

40

60

80

100

M
is

s
R

at
e

(%
)

0

2

4

6

8

10

12

14

16

EC
2 N

odes Allocated

co-op nodes
co-op
static-2
static-4
static-8

(b) Querying Rate = 255 queries/timestep

Fig. 3. Miss Rate

Figure 3(a) and Figure 3(b) represents the results for miss
rates for experiments conducted with 50 queries/timestep and
255 queries/timestep respectively. The X-axis represents the time
steps elapsed in our experiment (recall from above that a time
step is not real time, but a simulated time in which R query
requests are sent). The right-hand Y -axis represents the EC2
nodes allocated throughout the experiment.

As the experiment proceeds, the miss rates decrease lin-
early, since requests are submitted at random. static-2 and
static-4 appear to converge very early in the experiments,
while static-8 seems to perform as well as our system in
Figure 3(a). It can also be observed that our system uses a
maximum of 8 nodes at the end of the execution, which explains
its similar performance to static-8. The early convergence
of static-8 can finally be observed in Figure 3(b), where
the query rate is increased to 255 queries/time step. Our system
can attain near-zero miss rates toward the end of the experiment,
however, at the expense of 15 final nodes.

One aspect that is not being shown here is the time taken to
split and migrate data when a new node is allocated. This may
be a costly overhead that varies depending on the index that is
being used on the cohort cache server. We show an evaluation
of the impact of indexing schemes, and the migration overheads,
next.

C. Cache Server Index Comparison

The three indexing schemes we compared are: B+-Trees
(B+Tree), and Counting Bloom Filter (CBF), and Extendible
Hashing with three bucket size configurations: (EH100, EH300,
EH500). We evaluate the suitability of these algorithms for our
system based on the total time taken to run the experiment, the
total time taken to migrate records and minimum, maximum
and average time taken per migration. In these experiments, we
are showing the total time taken to interact with two querying
models: 50 queries/timestep and 255 queries/timestep without
speculative migration. We will show the optimization observed
with speculative execution in a later subsection.

Figure 4(a) shows the results obtained by running the exper-
iment with 50 queries/timestep, which is relatively lower query
intensity than Figure 4(b) (255 queries/timestep). The total time
taken to run the experiments varied between 50 to 70 minutes. As
we had alluded to earlier, we observe that instance startup times
can vary quite a bit, and combined with data migration, these
overheads account for nearly half of the total execution time for
50 queries/timestep. As expected, the migration time for CBF
performs the worst, but is easily dominated by instance startup
overhead. Although these overheads expectedly amortize as we
increase the request rate to 255 queries/timestep, they are still
quite significant.

In Figure 4(a), it can be observed that EH500 outperforms
the rest, while CBF are clearly the worst option. We can observe
that, the system parameter (records per bucket) greatly impacts
the performance of Extendible Hashing. The B+-tree performs

368

B+Tree
CBF

EH100
EH300

EH500

Index Scheme

10

20

30

40

50

60

70
Ex

ec
ut

io
n

Ti
m

e
(m

in
)

Total
Instance Startup
Data Migration

44%
42% 44% 46% 48%

(a) Query rate = 50 Queries/timestep

B+Tree
CBF

EH100
EH300

EH500

Index Scheme

50

100

150

200

250

Ex
ec

ut
io

n
Ti

m
e

(m
in

)

Total
Instance Startup
Data Migration

36% 24% 35% 30% 29%

(b) Query rate = 255 Queries/timestep

Fig. 4. Execution Time of Indexing Schemes

well irrespective of the parameters. This can also be verified by
Figure 4(b), where EH300 now performs the best and CBF again
performs the worst. However, the performance of EH500 records
per bucket has degraded considerably whereas the performance
of B+-Tree scales quite well even when the query intensity is
increased. Thus, we posit that the performance of Extendible
Hashing also depends on the system parameter: querying rate.

Focusing now on Figures 5(a) and 5(b), we have averaged the
time taken per data migration, i.e., the time taken to identify and
transfer the range of data to be moved from the overflown node
to the new node. In total, the 50 queries/timestep rate invoked mi-
gration 7 times and the 255 queries/timestep experiment invoked
migration 15 times. The results being shown are compelling. We
do not observe much variation between the two graphs for B+-
Trees, which suggests that it scales well to high requests rates.

The interesting note is that, on average, CBF actually perform
better as the number of migrations increases. This is due to

B+Tree
CBF

EH100
EH300

EH500

Index Scheme

30

40

50

60

70

D
at

a
M

ig
ra

tio
n

Ti
m

e
(s

ec
)

(a) Query rate = 50 Queries/timestep, 7× Migration

B+Tree
CBF

EH100
EH300

EH500

Index Scheme

30

40

50

60

70

D
at

a
M

ig
ra

tio
n

Ti
m

e
(s

ec
)

(b) Query rate = 255 Queries/timestep, 15× Migration

Fig. 5. Migration Time of Indexing Schemes

the fact that the number of records to be migrated decrease
over time across all indexing schemes, as an effect of consistent
hashing. The reason for this is because, over time, the ranges
on the consistent hashing ring will generally decrease. Recalling
that migration on CBF is slightly super-linear due to scanning
for false-positives, as the data range decreases over time, false-
positives also decrease, rendering this algorithm closer to linear
time. As we can see in Figure 5(b), CBF is eventually equivalent
to the B+-Trees’ linear-time migration algorithm.

The same logic can be applied to explain the degrade in
performance for the EH* schemes, which all perform worse as the
number of migrations increase from 7 to 15. Using the worst case,
EH500, to exemplify, the average migration times are quite low
when we have less migrations because there are smaller numbers
of buckets to traverse linearly. As migrations increase to 15 times,
this would imply that the much more data is being stored in
the index, which translates to not only a larger directory size

369

(grows exponentially), but also potentially many buckets with
data in the range scattered within each. In other words, we begin
to observe the inherent problem of hashing-based solutions for
handling ranges. The tradeoff is that its O(1) lookup facilitates
fast hit/miss indication, which leads to better overall performance
for high querying rates.

We summarize by observing that B+-Tree would scale well
irrespective of the system parameters, and EH*, with their O(1)
exact-match searches, could actually outperform B+-Trees if
the parameters are chosen appropriately. However, if the cache
system is volatile, and migration is invoked often, EH* indexing
schemes will yield increasingly poor migration performance.
CBF should typically be avoided as an indexing scheme for
elastic key-value store, but it may scale well for applications
relying on space-efficient structures. We also made the interesting
observation that CBF migration overheads become better over
time.

D. Optimization Results

Back in Section IV, we described an approach to minimize
the idle time when migrating data to newly allocated EC2 nodes.
Instances are pre-launched when a threshold is met and the
migration overlaps with normal program execution. The results
have been summarized in Figures 6. On the left side of the figure,
we show the original results for EH300 and CBF. The right
side of the figure depicts the results after we apply speculative
prelaunching.

EH300
CBF

EH300+Opt

CBF+Opt

Index Scheme

0

10

20

30

40

50

60

70

Ex
ec

ut
io

n
Ti

m
e

(m
in

) Total
Overhead

48% 43%

12% 3%

Fig. 6. Optimization Results for Query Rate = 50 queries/timestep.

We executed a total of 3 runs and reported the average
overhead and total times. After optimization, we managed to
improve overhead by 4× and 14× respectively in EH300 and
CBF. Even with the improvements, there are clearly opportunities
for improvement here, and we propose to develop more robust
heuristics in future works.

VI. RELATED WORKS

Distributed data and cache storage systems are abundant, and
they differ in usage expectations which define their function-
alities. As today’s data store solutions typically seek to avoid
a centralized architecture, consistent hashing [14] has quickly
become the preferred method for specifying data locality. For
instance, consistent hashing is currently being employed in many
Web caching [15], peer to peer [23], [22], [25], and NoSQL data
stores [8], [17], [20].

Due to the simplicity in their APIs, key-value stores (or so-
called NoSQL data stores) have become increasingly popular in
supporting today’s applications. Memcached [13] is a popular
distributed key-value caching system which originally aimed
to accelerate dynamic Web applications by eluding expensive
unnecessary queries to back-end databases. It stores serialized
data objects in memory up to a fixed size, but it is typically
assumed small. The memcached servers utilize an LRU and TTL
eviction policy and requires manual scaling. MemcacheDB [19]
further adds persistence and transaction support to the memcache
framework by using BerkeleyDB [20] as a back-end. In contrast,
our system has no restrictions on data size and allows the servers
to expand on-demand when reaching capacity. We use consistent
hashing on the client to route requests and furthermore provision
data migration capabilities to avoid cache misses upon node
expansion. Due to memcache’s lack of migration, we can expect
significant amounts of misses on certain range of keys during
manual scaling. We are working on comparing our work against
memcached in an elastic Cloud environment.

Google’s BigTable [4] and the open-source Hadoop-oriented
implementation, HBase6, are distributed column-stores capable
of handling very large structured data, capable of scaling to
thousands of low-cost machines. Amazon’s Dynamo [8] and
Facebook’s Cassandra [17], are highly available and reliable key-
value stores for structured data. Like our system, both Cassandra
and Dynamo allow for incremental scaling of nodes through
exploiting consistent hashing to handle data partitioning and
migration. The above efforts in key-value stores put forth focus
on supporting features required in transactional databases, in-
cluding replication, persistence, and consistency. While enabling
such support is a necessity for persistent data applications, it
expectedly leads to a degrade in performance. The data cache
presented in this paper is far more ephemeral and lightweight in
nature. Our cache does not focus on persistence and thus avoid
these such requirements.

Our proposed cache system has been tailored for Cloud envi-
ronments and is capable of incrementally grow to flexibly adapt
to increasing workloads, which are prevalent in compute- and
query-intensive environments. Moreover, the main contribution
in this paper is analyzing data migration overheads given various
pervasive key-indexing schemes in elastic Cloud environments.

6http://hbase.apache.org

370

VII. CONCLUSION

Clouds are an on-demand source of computational and storage
resources, and it supports dynamic scaling of these resources.
This property of the Cloud motivated us to implement a co-
operative elastic cache which has been deployed onto Amazon
EC2. We showed through experiments that elasticity can be
leveraged incrementally to reduce cache miss rates to near-zero
values in our application. Moreover, the system achieved the
same performance as the static node versions (found in traditional
cluster environments), but utilized fewer nodes in the process,
which is important in terms of cost.

Secondly, we evaluated the performance of B+-tree, Extendible
Hashing and Counting Bloom Filters. Counting Bloom Filters
consistently performed poorly and was the least suited for our
system, in the context of supporting the elastic cache. As ex-
pected, B+-Trees performed well consistently and scaled up well
to change in query intensity. The performance of Extendible
Hashing was dependent on its parameter (number of records
per bucket) and the system environment (query intensity). Thus,
Extendible Hashing outperformed all other indexing schemes, on
choosing the right parameters, which was not initially within our
expectations. Another interesting observation we made was the
Bloom Filter’s increasing performance in data migration, as nodes
were being added. In the end, however, this resurgence will not
overtake B+-Trees’ overall performance.

Finally, we attempted to optimize the system by minimiz-
ing wait time (idle time) through speculative prelaunching of
instances. This was achieved by pre-loading instances when
a threshold was met and by introducing multi-threading. The
threshold varied dynamically and depended on the node capacity,
number of nodes allocated and the query intensity.

ACKNOWLEDGMENTS

We are extremely grateful to our reviewers for their insight-
ful comments and suggestions for improving this paper. Their
constructive input is, as always, greatly appreciated.

This work was generously supported by an Amazon Web
Services (AWS in Education) Research Award to D. Chiu at
Washington State University.

This research was also supported by NSF grants IIS-0916196
and CCF-0833101 and an Amazon Research Award to G.
Agrawal at Ohio State University.

REFERENCES

[1] M. Armbrust, et al. Above the clouds: A berkeley view of cloud computing.
Technical Report UCB/EECS-2009-28, EECS Department, University of
California, Berkeley, Feb 2009.

[2] R. Bayer and E. McCreight. Organization and maintenance of large ordered
indices. In SIGFIDET ’70: Proceedings of the 1970 ACM SIGFIDET (now
SIGMOD) Workshop on Data Description, Access and Control, pages 107–
141, New York, NY, USA, 1970. ACM.

[3] F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh, and G. Varghese.
Beyond bloom filters: from approximate membership checks to approximate
state machines. In SIGCOMM ’06: Proceedings of the 2006 conference
on Applications, technologies, architectures, and protocols for computer
communications, pages 315–326, New York, NY, USA, 2006. ACM.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: a distributed storage
system for structured data. In Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation - Volume 7, pages 15–15,
Berkeley, CA, USA, 2006. USENIX Association.

[5] D. Chiu, A. Shetty, and G. Agrawal. Elastic cloud caches for accelerating
service-oriented computations. In Proceedings of SC, 2010.

[6] D. Comer. The ubiquitous b-tree. ACM Computing Surveys, 11:121–137,
1979.

[7] S. Das, D. Agrawal, and A. E. Abbadi. ElasTraS: An Elastic Transactional
Data Store in the Cloud. In Proceedings of Workshop on Hot Topics in
Cloud (HotCloud), 2009.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
amazon’s highly available key-value store. In Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems principles, SOSP ’07, pages
205–220, New York, NY, USA, 2007. ACM.

[9] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems, Fourth
Edition. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2003.

[10] R. J. Enbody and H. C. Du. Dynamic hashing schemes. ACM Comput.
Surv., 20(2):850–113, 1988.

[11] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible hashing
- a fast access method for dynamic files. ACM Trans. Database Syst.,
4:315–344, September 1979.

[12] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable
wide-area web cache sharing protocol. IEEE/ACM Trans. Netw., 8(3):281–
293, 2000.

[13] B. Fitzpatrick. Distributed caching with memcached. Linux J., 2004:5–,
August 2004.

[14] D. Karger, et al. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In ACM Symposium
on Theory of Computing, pages 654–663, 1997.

[15] D. Karger, et al. Web caching with consistent hashing. In WWW’99:
Proceedings of the 8th International Conference on the World Wide Web,
pages 1203–1213, 1999.

[16] A. Kirsch and M. Mitzenmacher. Less hashing, same performance: Building
a better bloom filter. Random Struct. Algorithms, 33(2):187–218, 2008.

[17] A. Lakshman and P. Malik. Cassandra: structured storage system on a p2p
network. In Proceedings of the 28th ACM symposium on Principles of
distributed computing, PODC ’09, pages 5–5, New York, NY, USA, 2009.
ACM.

[18] H. Lim, S. Babu, and J. Chase. Automated Control for Elastic Storage. In
Proceedings of International Conference on Autonomic Computing (ICAC),
June 2010.

[19] Memcachedb http://memcachedb.org/.
[20] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley db. In Proceedings of the

annual conference on USENIX Annual Technical Conference, pages 43–43,
Berkeley, CA, USA, 1999. USENIX Association.

[21] F. Putze, P. Sanders, and J. Singler. Cache-, hash-, and space-efficient bloom
filters. J. Exp. Algorithmics, 14:4.4–4.18, 2009.

[22] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems. In IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), pages 329–350,
Nov. 2001.

[23] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of the ACM SIGCOMM ’01 Conference, San Diego, California,
August 2001.

[24] J. D. Ullman, H. Garcia-Molina, and J. Widom. Database Systems: The
Complete Book. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[25] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz. Tapestry: A resilient global-scale overlay for service
deployment. IEEE Journal on Selected Areas in Communications, 22(1):41–
53, Jan. 2004.

371

