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Abstract—Advances in storage software and filesystems have
proliferated a vast array of easy-to-use distributed storage
services, removing the barrier for a growing number of orga-
nizations to geo-distribute large data sets. While leaving data in
their distributed environments is convenient for data collection,
various types of processing (that might use multiple data sources)
are precluded due to the prohibitive costs of data movement.
Users are therefore burdened with finding creative ways of
performing data analysis, often requiring expert knowledge in
multiple domains.

This paper reports on the design and implementation of a
query engine that enables high-level queries over distributed
data sets. Our system generates bitmap indices at multiple geo-
distributed data sources in order to approximate large amounts
of raw data values. The bitmaps are replicated for fault-tolerance
and performance. Upon accepting a high-level (SQL-like) query,
our system generates a query plan, resolves dependencies, and
schedules for its execution over the distributed system. The
system has been tested rigorously, and experimental results show
that most overheads (i.e., query planning, node spawning, etc.)
are negligible. Our testing also shows that our system is capable
of delivering query results in the face of node failures, with
no observable impact on query execution for up to 20% of the
system failing. The system also provides a framework that is
easily extendible for future research on the interplay between
distributed systems and bitmap indices.

I. INTRODUCTION

Distributed data storage systems were initially designed to
incorporate geographically distributed users while improving
availability and performance of access to data [1]. The same
set of motivations are even more pronounced in today’s data-
driven applications. The value of analytics has incentivized or-
ganizations to store data sets of high resolution and size. Also,
the success of cloud computing has significantly reduced the
cost barrier to access high-capacity distributed storage. Finally,
the rate of data generation is so rapid among emerging appli-
cations that organizations lack the time to prepare and load
the data into a relational database for query processing [2].
Therefore, a growing number of organizations now store their
data, possibly piecemeal, in raw formats across high-capacity
distributed storage systems. That an organization regularly
uses distributed cloud storage [3]–[5] and freely available
distributed filesystems [6], [7] has become commonplace.

While cloud storage providers and distributed filesystems
have effectively abstracted away various low-level complexi-
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ties to enforce data consistency and availability, users are still
laden with the challenges of orchestrating the processing of
their distributed data sets. Programmers need an intuitive and
efficient mechanism to retrieve the desired data to participate
in query execution.

Consider a motivating real-world example in which an
organization generates, stores, and processes data sets in
a distributed system: The Bonneville Power Administration
(BPA.gov), a U.S. federal energy marketing authority, is
completing its implementation of a Smart Grid project, in
which hundreds of remote sensors are geographically deployed
across the northwest power grid [8]. Each sensor collects high
resolution power-transmission data at a rate of up to 120
measurements per second, resulting in ∼ 2 GB per hour stored
in nearby servers.

Figure 1 illustrates an important application within BPA’s
Smart Grid. The shaded blue areas denote the geographical
regions represented by data stored in a nearby disk. During
a power event (e.g., line failure), it is imperative for grid
operators to obtain the prior state of the grid within the faulting
region [9]–[11]. The state of the grid in the moments leading
up to the fault must be reconstructed using data pertaining to
several geographically-distributed disks. However, problems
abound: First, due to the power failure, the nodes storing
the data are also presumably unreachable. Second, even if
the data was obtainable (e.g., power backup was available),
it is still prohibitively expensive to transfer all the data onto
a centralized location for processing.

Therefore, users must in real-time (1) identify which (re-
maining) storage nodes might contain the data pertaining to
the region of interest, i.e., A, B, E, and D in the figure,
(2) retrieve only the subset of data necessary to perform the
analysis to minimize data transfer, and (3) orchestrate data
transfer, dependency resolution, execution of processes, and
interpretation of the information that is extracted.

To solve this class of problems, we propose a comprehensive
system that supports efficient high-level (e.g., SQL style)
queries and fault-tolerance over distributed data sets. At the
heart of our system are bitmap indices, built to summarize
and approximate the raw data with which they are co-located.
As we will show in Section II, bitmaps are fast and effective
in summarizing large amounts of data. We employ data-
replication strategies to ensure that queries can be answered
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Fig. 1: Distributed Data Generation and Querying

even in the presence of node failures. Our system accepts and
parses a high-level input query, then decomposes it into a set
of simple bitwise operations, each known as subqueries, that
are performed across the distributed bitmaps. As we will later
explore, because subqueries are independent units, they can
be executed in parallel, leading to higher performance. The
subqueries’ partial results are merged and reduced, before the
final result is returned to the user.

The remainder of this paper is organized as follows. Sec-
tion II presents a brief background on bitmap indices. Then
Section III gives an overview of our distributed indexing
system, and the algorithms involved in ensuring the index
is both consistent and fault-tolerant. Section IV outlines our
query planner and execution engine. We show that queries
can be processed efficiently in terms of minimizing the time-
complexity as well as the number of messages required.
Experimental setup and results are explained in Section V.
Section VI describes, to the best of our knowledge, the related
work. Finally, Section VII describes the future work and
conclusion.

II. BACKGROUND

In this section we present a brief overview of bitmap indices,
and how they enable fast query execution in database systems.

As an example, let us consider indexing the US census data
(see Table I for a small subset of example data). If stored in its
raw un-indexed format, then answering even a simple query,
“Return people with salaries of at least $100 000 who are under
the age of 50,” would require a scan each of the 326 000 000
tuples (or rows) of the file, as each tuple corresponds to a
unique person in the US. Assuming that each tuple requires
only 1 KB of storage, the query processing time would exceed
10 minutes on a modern solid-state drive with 550 MB/s read-
bandwidth. Clearly, the performance would be unacceptable
for real-time data analysis.

To accelerate query execution, modern database systems
typically employ some form of an index. Generally, an index
is a data structure that stores a key by which to identify
a tuple on disk. The query engine would then first consult
the index to prune away true-negatives, and reserve expensive

TABLE I: Example of a Relation, CENSUS

Tuple Salary ($) Age City Name ...

t0 65 000 20 Tacoma Julia ...
t1 25 000 76 Spokane Tim ...
t2 130 000 42 Seattle Maria ...
t3 90 000 38 Tacoma David ...

disk accesses to check if candidate tuples meet the selection
criteria. Due to the emergence of modern bitmap-compression
techniques [12]–[15], the decades-old bitmap index [16] has
reemerged and gained favor with the broader big-data com-
munity [17]–[21]. A bitmap index is a set of bit-vectors
that represent truth values pertaining to underlying data. An
attribute, or column, in the database can be indexed by first
enumerating all possible values, or more commonly, ranges
of values (known as bins). Then each tuple’s value for that
attribute is examined, and if it matches the particular value or
bin, it is assigned 1, and otherwise, 0. Tables II and III show
four possible bins, and thus bit-vectors (read vertically), for
the corresponding Age (A) and Salary (S) attributes seen in
Table I.

TABLE II: Bitmap for Salary (S, in thousands) in Table I

S ≤ 60 60 < S ≤ 100 100 < S ≤ 300 300 < S
v0 v1 v2 v3

t0 0 1 0 0
t1 1 0 0 0
t2 0 0 1 0
t3 0 1 0 0

TABLE III: Bitmap for Age (A) in Table I

A < 18 18 ≤ A < 21 21 ≤ A < 66 66 ≤ A
v4 v5 v6 v7

t0 0 1 0 0
t1 0 0 0 1
t2 0 0 1 0
t3 0 0 1 0

Queries over a bitmap index are efficient, as they principally
comprise bitwise operations. To satisfy the previous query, we
first find all people making over $100 000 by ORing vectors v2
and v3. Next, we find everyone under the age of 50 by ORing
bitmap vectors v4, v5, and v6, which will include all who are
under the age of 66 (a superset of the tuples relevant to the
query). After ANDing together the two intermediate results, the
final bit-vector will have a value of 1 in rows corresponding
to those who may satisfy the selection. To identify the exact
tuples that satisfy the query, the query engine traces the 1-bits
to their corresponding tuple on disk and retrieves the value
to run the final check. The total number of tuples scanned is
significantly fewer than in a naı̈ve sequential disk scan.

III. SYSTEM OVERVIEW

The following section details various design choices made
during the implementation of the distributed bitmap engine.



A. System Architecture
Our distributed indexing system implements the master-

slave paradigm, comprising a head node and a collection of
index nodes. Each index node stores a set of bit-vectors and,
when requested, can perform logical operators across these
bit-vectors to satisfy queries.

The head node serves as the interface to the client, exposing
two important functions: PUT (k, v), which adds a bit-vector
with id k and value v into the system (or replaces the value of
vector k with v if k exists). It also supports the QUERY (q)
function, which returns the results of a given query string q
on the distributed index. Details of the query string and query
processing will be given in Section IV.

In addition to the client interface, the head node also man-
ages the index nodes. When an index node joins the network,
it is communicated to the head node, which then records its
existence, determines the existing and future bit-vectors that
should be moved to this node for fault tolerance, and manages
the data transfer. The head node periodically pings all index
nodes to ensure their availability, and upon receiving a timeout,
it commences the failure protocol, discussed in Section III-C.

Another task for which the head node is responsible is
data placement. Upon receiving a PUT (k, v) request from
the client, the head node sends the given bit-vector to r ≥ 2
unique index nodes, where r is the replication factor. The bit-
vector is saved on r distinct index nodes, so that if one node
became inoperative, then the bit-vectors it held are not lost.
In other words, our system can absorb r − 1 simultaneous
failures.

After determining where to store the replicas, we use the
two-phase commit (2PC) protocol [22] to ensure that the
data actually arrived at the appropriate index nodes. Before
committing a vector to an index node, the head node checks
that the r index nodes are available: if so, the vector is sent
to both, if either is unavailable, the inaccessible index node
is removed from the system and the commit of the vector is
restarted.

Finally, the head node is responsible for both planning and
carrying out query execution over the index nodes. To satisfy
a given query, the head node constructs a query plan, which
specifies which index nodes will help satisfy the query, and
the order in which the nodes are to be accessed to resolve
dependencies. The index nodes work together to satisfy queries
using the bit-vectors they contain, and return partial query
results to the head node. The head node then reduces the
results from each index node and returns it to the client. The
algorithms by which queries are satisfied are given in later
sections.

B. Consistent Hashing
The method we locate and store bit-vectors is through

consistent hashing [23]. When index nodes are added to the
system, the head node assigns it to a point on a ring, where
each point corresponds to a value between 0 and 264− 1. The
point for a node with identifier i is calculated as:

h(i) := SHA1(i) mod 264

To determine which index nodes (should) contain bit-vector k,
we “walk” clockwise from point h(k) until reaching the first
index node (known as the primary node), and continue walking
until reaching the succeeding node (known as the backup
node). This process continues until all remaining backup nodes
are identified. The primary and the r−1 backup nodes contain
a replica of bit-vector k.

Figure 2 shows an example when r = 2. To locate bit-
vector vn, it is first hashed onto the ring. A clockwise walk
determines that node C is the primary index node storing vn.
A further walk from C determines that D is the lone backup
node containing a replica.
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Fig. 2: Visualization of Ring Consistent Hashing (when r = 2)

In our system the consistent-hashing structure is imple-
mented using a red-black tree. Each tree node corresponds
with an index node in the distributed system and contains
pointers to its left child, right child, and parent. The figure
above that shows the placement of vn is revisited as a red-
black tree in Figure 3.
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TREE-SUCC(tree,h(vn))

TREE-SUCC(tree,h(C.id))

Fig. 3: Red-Black Tree Traversal

This hashing scheme is formalized in Algorithms 1, 2,
and 3, respectively. Calling Algorithm 1 will return a set of r
index nodes that store the given bit-vector.

Lemma 1. TREE-SUCC ∈ O(log n), where n is the number
of nodes in the system.



Algorithm 1 Consistent Hashing
procedure CONSISTENT-HASH(tree, key, r)

inodes← {TREE-SUCC(tree,h(key))}
for i← 1 to r − 1 do

inodes← inodes ∪
{TREE-SUCC(tree, inodes[i− 1].id)}

return inodes

Algorithm 2 Successor Node
procedure TREE-SUCC(tree, key)

if h(key) ≥ h(TREE-MAX(tree).id) then
return TREE-MIN(tree)

else
root← ROOT(tree)
return RECUR-SUCC(tree, root, root, key)

Proof. If h(key) > h(TREE-MAX(tree).id), TREE-SUCC
will be called at most h times until one of the first two
branches is taken, where h is the height of the tree. In the
second branch, either loop will run for up to h iterations. In all
cases, since h = O(log n) [24], TREE-SUCC ∈ O(log n).

Lemma 2. CONSISTENT-HASH ∈ O(r log n).

Proof. Follows trivially from the implementation and
Lemma 1.

C. Fault Tolerance with Bit-Vector Redistribution

The principal reason for employing consistent hashing is
to support fault tolerance. Upon receiving a message from the
client, the head node checks the living status of its index nodes.
If an index node times out, it reallocates the index node’s bit-
vectors using REALLOCATE (Algorithm 4), passing the timed-
out node as a parameter. In each node in the red-black tree we

Algorithm 3 Recursively Determine Successor Node
procedure RECUR-SUCC(tree, root, succ, key)

if root = null then
return succ

else if key = h(root.id) then
if RIGHT(root) = null then

while PAR(succ) 6= null ∧ h(succ) < key do
succ← PAR(succ)

else
succ← RIGHT(root)
while LEFT(succ) 6= null do

succ← LEFT(succ)
return succ

else if h(root.id) > key then
left← LEFT(root)
return RECUR-SUCC(tree, left, root, key)

else
right← RIGHT(root)
return RECUR-SUCC(tree, right, succ, key)

store the identifiers of the primary vectors on the associated
index node (contained in the vectors list), specifically for this
purpose.

Algorithm 4 Reallocation
procedure REALLOCATE(tree, inode, r)

S0 ← TREE-SUCC(tree, inode.id)
S1 ← TREE-SUCC(tree, S0.id)
for i← 0 to r − 3 do

S1 ← TREE-SUCC(tree, S1.id)

SEND-VECTORS(S0, inode.vectors, S1)
S0.vectors← S0.vectors ∪ inode.vectors
P ← TREE-PRED(tree, inode.id)
for j ← 0 to r − 2 do

S1 ← TREE-PRED(tree, S1.id)
SEND-VECTORS(P, P.vectors, S1)
P ← TREE-PRED(tree, P.id)

RB-DELETE(tree, inode)

To understand the REALLOCATE procedure, suppose
there are r + 1 index nodes. Let Id+k denote the in-
dex node positioned k nodes ahead of node Id on the
consistent hashing ring. Suppose that the head node calls
REALLOCATE(tree, Id, r). Id’s primary vectors are backed
up on nodes {Id+1, Id+2, . . . , Id+r−1}. To ensure that Id’s
primary vectors are contained in r index nodes, we must have
Id+1 pass said vectors to Id+r, which is found by repeatedly
finding successors of Id as shown.

Consistent hash mappings of Id’s primary vectors will map
to Id+1 upon deleting Id from the tree, so Id+1 must inherit
Id’s primary vectors. Next we must ensure that the vectors
that Id held as a backup are transferred to additional nodes
to satisfy our r-replication requirement. We do this by taking
making the r − 1 predecessors of Id forward their primary
vectors to the index nodes r places ahead of them. Afterward,
every index node’s primary vector is contained the proceeding
r − 1 nodes, thus guaranteeing that each vector is located on
r unique index nodes.
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Fig. 4: Visualization of Vector Reallocation (when r = 2)

An example of this procedure when r = 2 is shown in
Figure 4. Here, node F has failed. The vectors that must



be reallocated are those for which node F was the primary
location and those for which node F was the backup location.
In the figure, vectors v1 and v2 had F as their primary location
and B as their backup location (which will now become their
primary location). So, B will send copies of v1 and v2 to node
C, which will serve as the new backup location, as it succeeds
B on the ring. Second, vectors v4 and v5 will be sent from
A (their primary location) to B, which will now serve as the
backup node for F . After this, the system will once again
contain two copies of each vector.

In our implementation we utilized algorithm TREE-PRED
to locate the predecessor of a given node on the ring,
which is symmetrical to the TREE-SUCCESSOR algorithm
given in [24]. We also use RB-DELETE to remove an in-
dex node from the tree [24]. We made use of an RPC,
SEND-VECTORS(I1,K, I2), which tells index node I1 to send
each vector in K to index node I2.

Theorem 1. REALLOCATE has O(r) message complexity and
O(r(log n + K/n)) time complexity, where K is the total
number of vectors in the system.

Proof. According to Lemma 1, TREE-SUCC and TREE-PRED
run on order O(log n). They are called a total of r and 2r−1
times, respectively. Because any vector has an O(1/n) proba-
bility of being an arbitrary index node’s primary vector [23],
we would expect |K| = O(K/n), where K is an index node’s
set of primary vectors. SEND-VECTORS(I1,K, I2) will require
I1 to send O(K/n) vectors, so it will need to marshal the
contents of O(K/n) vector files into an RPC call it makes to
I2, and therefore has O(1) message complexity and O(K/n)
time complexity; it is called r times. Finally, RB-DELETE has
O(log n) time complexity [24]. Thus total time complexity
is O(3r log n + r(K/n))) = O(r(log n + K/n)) and total
message complexity is O(r).

The rationale for using consistent hashing is to reduce data
movement during reallocation. For instance, when the system
changes (e.g., an index node is added or removed) it is possible
under naı̈ve hashing techniques that every bit-vector may need
to be rehashed [25]. This hash disruption imposes a significant
amount of message passing for data re-organization than our
REALLOCATE function. While naı̈ve methods, such as static
hashing, requires O(K) remappings [23], consistent hashing
only requires O(K/n) remappings (Theorem 1).

IV. QUERY PLANNING AND DISPATCH

Using bitmap indices, our system can handle range and
point (exact-match) queries. Other queries, including joins and
aggregation are also possible, but were not yet implemented
at the time of writing.

A range query is given as a sequence of pairs of bit-
vector IDs, where each pair specifies the first and final
vectors in the range. Within these ranges, the vectors are
ORed together. An example of a range query is coded
[2,3]&[4,6] which would, in the context of Tables II
and III, correspond to the SQL query, select * from

CENSUS where salary>100000 and age<50. Using
a bitmap index, the query can be satisfied by evaluating the
expression:

(v1 ∨ v2) ∧ (v4 ∨ v5 ∨ v6)

In this paper we refer to each parenthetical quantity as a
subquery. Note that subqueries, which involves sequence of
ORs, can be performed independently. The results of multiple
subqueries are then reduced to complete the process.

……

…
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Head
node
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vectors
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Fig. 5: Query Execution

A point (exact-match) query is the same as a range query,
except that each pair is of the form [n,n]. For instance,
select * from CENSUS where salary=100000
and age=50 can be simply coded as the range query
[1,1]&[6,6]. Point queries require no intermediate
subquery execution, as the bit-vectors v1 and v6 can be
returned immediately by their respective index nodes for
reduction. Because bit-vectors are distributed throughout
our system, there may exist multiple plans to facilitate their
access. In the following subsections, we outline an optimal
query-planning strategy to execute the query as efficiently as
possible.

Figure 5 shows the comprehensive query-execution scheme.
(0) A client initiates the process by submitting a high-level to
the head node. For each query, the head node generates an
optimized query plan, then dispatches the plan to at least one
index node to shepherd the query. All of the necessary bit-
vectors may be contained on one index node (1), in which
case, the results are returned to the head node immediately.
(7) This occurs more often for point queries and for range
queries that contain short ranges.

Otherwise, the head node dispatches additional subqueries,
which are partial ranges, to the specific index nodes that



store the appropriate bit-vectors. (4-5) Their partial results are
delivered to the head node, where the partial results of the
subqueries are reduced. (6) Finally, the head node transfers
the results back to the client. (7)

A. Query Planning

In step (1) of the query execution scheme described previ-
ous, the query-planning algorithm (Algorithm 5) inputs tree,
which is the red-black tree used in consistent hashing, the
replication factor r, and a list of pairs, R, where each pair
(i, j) ∈ R denotes a subquery range starting at bit-vector vi
and ending at vj (inclusive), where i ≤ j. Sorting of subpaths
is performed so that, in each portion of the query, index nodes
do not have to be visited more than once, making query-
processing linear with respect to the number of index nodes.
Because the bitwise operator ∨ is commutative, the order in
which the vectors are ORed within the subquery is arbitrary,
and therefore, the subqueries can be processed in parallel. In
an effort to distribute the work to all index nodes as evenly as
possible, we choose a random return value from CONSISTENT-
HASH as the index node to visit for each of the given vectors.

Algorithm 5 Query Planning
procedure QUERY-PLAN(tree, r, R)

paths← ∅
for all (first, last) ∈ R do

subpaths← ∅
for v id ∈ [first, last] do

inodes← CONSISTENT-HASH(tree, v id, r)
inode← inodes[RANDOM(0, r)]
subpaths← subpaths ∪ {(inode id, v id)}

Sort subpaths on inode id
paths← paths ∪ {subpaths}

return paths

The return value of QUERY-PLAN is a set of subqueries,
Q, where each subquery comprises one or more pairs of the
form (inode id, vector id). These pairs are used in the query
execution algorithms to determine which index nodes to visit
and which vectors to obtain. For example, the pair (3, 2)
indicates that v2 should be retrieved from index node 3.

Theorem 2. QUERY-PLAN ∈ O(|R| · r ·K log(K · n)).

Proof. Operations in the innermost loop are O(r log n) and
O(1) (Lemma 2). That loop runs for (last − first) ≤ K
iterations, taking O(K · r log n) time. subpaths is at most K
in length, and sorting it requires O(K logK) time; because
the outer loop executes |R| times, the entire procedure has
O(|R| · K(logK + r log n)) time complexity. Since

lim
n→∞

r log n+ logK

r log(K · n)
= 1,

QUERY-PLAN ∈ O(|R| · r ·K log(K · n)).

B. Query Execution

Execution of queries received by the head node is handled
using Algorithm 7, which first plans the query using Algo-
rithm 5 and then delegates each subquery to its index nodes
using Algorithm 6.

Algorithm 6 is an RPC that inputs an index node identifier
and a set of pairs representing a subquery. The index node
iterates over the pairs referencing bit-vectors it contains, and
ORs the vectors together. RETRIEVE-VECTOR(k) returns the
value of vector vk. Once the index node has operated on all
requested vectors it holds, it makes an RPC to the index node
in the subsequent pair, recursively satisfying the remainder of
the subquery.

Theorem 3. If s is the number of index nodes involved in the
range, then the initial call to RANGE-SUBQUERY has O(s)
message complexity.

Proof. Because subquery is sorted on node, each call will
target an index node not previously accessed, and will not be
called more than once by any index node, as it has finished
ORing its own vectors to the result at that point. Therefore, if
each index node is involved in the subquery, a total number
of s messages will need to be sent.

Algorithm 6 Index Node Subquery
procedure RANGE-SUBQUERY(inode id, subquery)

r ← ~0
for all (inode, vec) ∈ subquery do

if inode = inode id then
r ← r ∨ RETRIEVE-VECTOR(vec)
subquery ← subquery \ (inode, vec)

else
s← RANGE-SUBQUERY(inode, subquery)
r ← r ∨ s

return r

Algorithm 7 accepts a complete query, divides the work
among the index nodes, ANDs the results of the subqueries
(denoted by R) together, and returns the result to the DBMS.
By Theorem 3, the procedure will require O(|Q| ·s) messages,
where Q is the set of subqueries.

Algorithm 7 Head Query Root
procedure HEAD-QUERY-ROOT(Q)

R← ∅
for all subquery ∈ Q do . Delegate subqueries.

inode id← subquery[0][0]
r ← RANGE-SUBQUERY(inode id, subquery)
R← R ∪ {r}

v ← ~1
for all w ∈ R do . AND the results.

v ← v ∧ w
return v



V. EXPERIMENTAL RESULTS

Our system is implemented in C and tested on Ubuntu
16.04.4 LTS. To create our RPCs, we specified RPCs in the
ONC+ RPC language [26], [27].

A. Experimental Setup

Most experiments involved stress-testing the distributed
system, which require significant horizontal scale-out capabil-
ities. Therefore, due to physical limitations, virtualization was
necessary and we decided to conduct all of our experiments
on a Docker test-bed running on a single Linux machine with
an Intel Quad-core i5-6500 3.20 GHz CPU, 16 GB RAM, and
a 120 GB SSD. Each container executed a single node (head
or index) as a lightweight process. The nodes communicated
via RPC over the Docker bridge network, which emulates a
star network between all nodes.

In order to the conduct the experiments, we used the TPC-C
data set, a commonly-used benchmark that models business
transactions [28], to derive 199406 bit-vectors, each 5 KB to
6 KB in size.

B. System Initialization Time

The first experiment observes the node initialization time,
which is the total time the head node used to handshake, and
insert into the consistent-hash ring, each index node. The node
initialization times are given in Table IV.

10 Nodes 100 Nodes 1000 Nodes
4.501 sec 48.253 sec 667.21 sec

TABLE IV: Node Initialization Time

The initialization time is consistently ∼ 0.5 seconds per
node, regardless of the number of nodes already registered
in the system. This result is intuitive, and shows expected
the efficiency of consistent hashing, whose time-complexity
is clearly dominated by node spawn time.

Next, we were interested in observing the performance of
the PUT (k, v) operator. We spawned 10 index nodes and
loaded varying numbers of bit-vectors, then repeated on 100
and 1000 index nodes. We only chose to evaluate TPC-C,
because it contains a large number of bit-vectors. Figure 6
depicts the results for a replication factor of r = 2. Note that
both axes are presented in log-scale for readability.

The results confirm that the load time is log-linear, i.e.,
O(r log n), which shows that our system scales to large
numbers of bit-vectors. One can observe a sizable gap between
the settings. We believe this is due to the log n factor for
consistent hashing, which noticeably contributes more to the
load time initially, when the system is only storing a small
number of bit-vectors. As more bit-vectors are added, the
hashing overhead is amortized due to the constant r (the
messages sent per bit-vector).

However, there is still another gap between the 100-node to
1000-node setting that cannot be explained by the consistent-
hashing overhead. We believe this overhead is due to the
head node’s heartbeat monitoring for fault-tolerance, which
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runs on each PUT command. This overhead introduces an
additional term for the n heartbeat messages, which causes the
rather constant-sized gap between the two lines. The heartbeat
overhead was simply not exposed between the smaller clusters.
This result indicates that we could optimize PUT by separating
it from the heartbeat logic, a topic for future work.

C. Query Execution and Fault Tolerance

The query execution experiments presented in this section
were performed under the following environment. 100 index
nodes were deployed and stored 10000 total bit-vectors. We
generated 1000 point queries and 1000 range queries, and
ran them as separate experiments in order to understand the
behavior of our system under each condition. The query
workloads are skewed (i.e., a subset of bit-vectors are selected
more often than others). This approach is generally well-
understood, as search-key and primary-key attributes are the
most frequently queried in database and analytical workloads.

In addition to capturing overall query execution time, we
were also interested in showing the impact of node failures on
performance. In the following figures, the no-failure label
pertains to the results in which we did not deliberately kill an
index node. The 10%-failure denotes the results in which
we killed off an index-node after every 100 queries, amounting
to 10% of the original node size. Finally, 20%-failure
shows the case in which we killed an index node after every
50 queries, leaving the system with only 80% of the index
nodes by the time the workload completes.

Point Queries: The first experiment observes the perfor-
mance of point queries both with and without index node
failures. The results are shown in Figure 7(a). Because point
queries are simple (requiring only a single bit-vector per
subquery), their results are quite stable and quite predictable.
The 1000-query workload completes in roughly 2 seconds for
all three cases. The reason that performance is not affected by
faults for point queries is two-fold. When an index node fails,
data reallocation is handled in the background, separately from
the query processor. Because the bit-vectors are replicated,
point queries still can be answered, even as replication is
taking place, through one of the backup nodes.
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Range Queries: The range query results are shown in
Figure 7(b). The average range query time is 0.197 seconds,
which is orders of magnitude longer than point queries. This
result is expected, because this workload contains queries that
may involve a large number of subqueries (and therefore, more
contact with index nodes). As one can observe, the cumu-
lative time increases in a “step-like” fashion, indicating the
exact queries in the workload that were I/O-heavy. However,
similarly to point queries, there is not a significant variance
between the workloads with and without failure.

Together, these results suggest that node failures do not
significantly impact query performance, thanks to consistent
hashing and bit-vector replication.

D. Overhead Evaluation

Next, we are interested in understanding the overhead of
query planning, which occurs on the head node. Recall that,
upon receiving a point or range query from the client, the head
node first generates a distributed query plan that is to be sent
for distributed query execution. We focus on range queries
here, because they their plans are strictly more complex
compared to point queries.

Figure 8 shows the time-elapsed to generate a plan for each
of the 1000 range queries in the workload. As we can see, the
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planning overhead is generally negligible and averages 0.07
ms (or only 0.03% of the average query execution time).

Finally, we show the time taken for bit-vector reallocation
following a node failure. After each index node failure, we
capture the sum of (1) the time taken for the head node to
communicate to the new nodes regarding which bit-vectors to
transfer, (2) the time elapsed to perform the transfer, and (3)
the overhead to remove the failed node from the consistent-
hash ring. Figure 9 shows the time taken to reallocate bit-
vectors onto remaining nodes for the 10% node-failure run
(top) and the 20% node-failure run (bottom).
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As can be seen, bit-vector reallocation time is generally
negligible (recalling that it does not impact query execution),
with an average reallocation time of 44.8 ms. The overhead
would expectedly grow if bit-vector sizes are large (not typical
for bitmaps due to compression), or if the number of bit-
vectors is much larger than our test data. However, we believe
that ∼ 200000 bit-vectors is already on the high-end, as most
bitmaps we have worked with in the past contain a few tens
or hundreds of bit-vectors. Comparing the two plots, we also
conclude that failure frequency does not negatively impact



reallocation overhead, as long as a significant number of nodes
remain. We would, of course, expect reallocation overhead to
grow when the number of remaining nodes becomes low.

VI. RELATED WORK

Some of the most persistent challenges with creating and
maintaining a distributed database system is reducing the
serialization and communicating overheads that can reduce
transaction and query throughput [29]. To address these chal-
lenges Alagiannis, et al. proposed the NoDB philosophy [2].
The tenet of this philosophy is to build systems with the goal
of reducing the data-to-query time. They present a NoDB
system, PostgresRaw which reduces the costs associated with
accessing the raw data. PostgresRaw also uses an adaptive
positional map as an indexing structure that is created on-the-
fly during query processing and maintains metadata on the
structure of the raw files. The bitmap index of our system is a
coarse representation of the data and can be queried directly.

Aligned with the NoDB philosophy is the set of work
involving scientific workflows. Workflow management sys-
tems [30]–[34] let users compose directed acyclic graphs
(DAG) comprising distributed data sources, processes, and
their data dependencies. Once a DAG is composed, a workflow
management system schedules the jobs for processing. Paral-
lelism is exploited through the simultaneous execution of in-
dependent jobs. Workflow composition, however, is nontrivial
as it requires manual labor with expertise in the scientific and
computational domains. And while automatic workflow com-
position engines exist [35]–[37], they require careful curation
of the data and processes and are quite limited in the types
of queries that are supported. Our system is more intuitive
in that it accepts high-level (SQL style) queries and returns
results without further user input.

Similar to the workflow management systems, Ebenstein
and Agrawal created a framework that supports join-like
operations over geographically distributed scientific data [38].
They present an algorithm for building and efficiently pruning
distributed query execution plans. We believe that the incor-
poration of bitmap indices may be able to further increase the
efficiency of distributed joins.

The design of our system draws inspiration from several
prominent distributed object storage systems. For instance,
Chord [39], Dynamo [5], Voldemort [40] and Redis [41]
are persistent distributed key-value stores that guarantee high
availability and eventual consistency on its objects. Like these
systems, we also use consistent-hashing to minimize data
movement when adding nodes. Instead of storing arbitrary
data objects, ours stores bit-vectors with the specific purpose
of answering queries. Also noteworthy are popular distributed
files systems, such as HDFS [6] and Calvin [42]. The goal
for these systems, however, focus on the access throughput of
massive files stored across multiple nodes. Because their use-
cases differ from ours, their user-interface supports primitive
filesystem operations, among some others collate, and transfer
the data onto local machines.

Other works have used bitmap indices in distributed sys-
tems. Fotiadou and Pitoura [43] used bitmap-based represen-
tations to compute skyline queries in a distributed setting.
Su, et al. [44] showed that bitmap indices can be used
to create lower-resolutions subsamples of massive datasets
while still preserving both value and spatial distributions.
These works did not explore the general use of bitmaps to
speed up distributed query processing. The closest work to
our own is Pilosa [21], a distributed bitmap engine built by
the eponymous company. It uses the Roaring Bitmaps [15]
compression algorithm and runs each node in a cluster in
lieu of using the master-slave model. Pilosa also allows data
replication on multiple nodes. Due to several core architectural
differences, Pilosa was not a large influence upon the design
of our system.

VII. CONCLUSION AND FUTURE WORK

In this paper we propose a fault-tolerant distributed system
that supports high-level database queries. Raw, geo-distributed
data sets are index using a bitmap. Subsets of this bitmap can
be replicated and distributed to enable high performance and
availability. Our query planner decomposes high-level queries
into subqueries, which are then dispatched for execution in the
distributed system.

There are several takeaways from the system’s evaluation.
We showed that our system is fault tolerant, and query per-
formance is generally predictable, even in the face of failures.
Initialization and query planning are necessary overheads, but
as we showed, they do not contribute significantly to the
overall query execution time. We also showed that failure
recovery (reallocation) overhead is independent from query
performance.

The heartbeat overhead, however, was unexpectedly long,
due to a design decision (and limitation of RPC) to have
the head node check the statuses of the index nodes at the
beginning of each PUT or QUERY transaction. In hindsight,
the work should have been done in reverse order, in which
we task the index nodes to periodically message the head
node. This decentralizes burden away from the head node,
and allows it to conduct more time-critical tasks. The heartbeat
mechanism will be fixed in future work.

Another future work topic involves distributed query opti-
mization. For instance, there are opportunities to short-circuit a
(sub)query that performs ORs over bit-vectors, but has obtained
a partial bit-vector that is entirely 0s. Conversely, this idea can
be extended to ANDs over bit-vectors with partial results of
0s. Furthermore, we can improve the O(r log n) performance
given by consistent hashing by using dynamic partitioning of
the bitmap vectors, as described in [25].
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