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Abstract—For many organizations, one attractive use of cloud
resources can be through what is referred to as cloud bursting or
the hybrid cloud. These refer to scenarios where an organization
acquires and manages in-house resources to meet its base need,
but can use additional resources from a cloud provider to
maintain an acceptable response time during workload peaks.
Cloud bursting has so far been discussed in the context of using
additional computing resources from a cloud provider. However,
as next generation applications are expected to see orders of
magnitude increase in data set sizes, cloud resources can be used
to store additional data after local resources are exhausted.

In this paper, we consider the challenge of data analysis in
a scenario where data is stored across a local cluster and cloud
resources. We describe a software framework to enable data-
intensive computing with cloud bursting, i.e., using a combi-
nation of compute resources from a local cluster and a cloud
environment to perform Map-Reduce type processing on a data
set that is geographically distributed. Our evaluation with three
different applications shows that data-intensive computing with
cloud bursting is feasible and scalable. Particularly, as compared
to a situation where the data set is stored at one location and
processed using resources at that end, the average slowdown of
our system (using distributed but the same aggregate number
of compute resources), is only 15.55%. Thus, the overheads due
to global reduction, remote data retrieval, and potential load
imbalance are quite manageable. Our system scales with an
average speedup of 81% when the number of compute resources
is doubled.

I. INTRODUCTION

Scientific and data-intensive computing have traditionally
been performed using resources on supercomputers and/or
various local clusters maintained by organizations. However,
in the last 2-3 years, the cloud or utility model of computation
has rapidly gained momentum.

Besides its appeal in the commercial sector, there is a
clear trend towards using cloud resources in the scientific
and HPC community. The notion of on-demand resources
has prompted users to begin adopting the cloud for large-
scale projects, including medical imaging [27], astronomy [7],
BOINC applications [18], and remote sensing [20], to name
just a few.

Various cloud providers are now specifically targeting HPC
users and applications. Until recently, clouds were not very
well-suited for tightly-coupled HPC applications. This was due
to the fact that they did not initially consider high performance
interconnects. Amazon, probably the single largest cloud ser-
vice provider today, announced Cluster Compute Instances
for HPC in July 2010. Shortly following that announcement,

Mellanox and the Beijing Computing Center announced a
public cloud that will be based on 40 Gb/s Infiniband in
November 2010.

For many organizations, one attractive use of cloud re-
sources can be through what is being referred to as cloud
bursting or the hybrid cloud. These are scenarios where an
organization acquires and manages in-house resources to meet
its base need, but can also harness additional resources from
a cloud provider to maintain an acceptable response time
during workload peaks [2], [21]. Cloud bursting can be an
attractive model for organizations with a significant need
for HPC. But despite the interest in HPC on clouds, such
organizations can be expected to continue to invest in in-
house HPC resources, with considerations such providing best
performance, “security” needs of certain applications, and/or
desire for having more control over the resources.

At the same time, through cloud bursting, organizations
can also avoid over-provisioning of base resources, while
still providing users better response time. In fact, it is quite
well documented that users routinely experience long delays
while accessing resources from supercomputing centers. As
one data point, in 2007, the ratio between wait time and
execution time was nearly 4 for the Jaguar supercomputer
at Oak Ridge National Lab (ORNL). Besides the need for
reducing wait times for user satisfaction and productivity,
another consideration is of urgent high-end computations,
where certain compute-intensive applications rely on rapid
response1.

Cloud bursting has so far been associated with the use
of additional computing resources from a cloud provider for
applications [2], [21]. We do not believe that it needs to be
limited in this fashion. As next generation applications are
expected to see orders of magnitude increase in data set sizes,
cloud resources can be used to store additional data after
local resources are exhausted. While the available bandwidth
to cloud-based storage is quite limited today, ongoing devel-
opments (such as building dedicated high speed connections
between certain organizations and a cloud provider) are ad-
dressing this issue. Thus, one can expect efficient storage and
access to data on cloud resources in the future.

In this paper, we consider the challenge of data analysis
in a scenario where data is stored across local resource(s)
and cloud resources. Analysis of large-scale data, or data-
intensive computing has been a topic of much interest in recent
years. Of particular interest has been developing data-intensive

1Please see http://spruce.teragrid.org
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applications using a high-level API, primarily, Map-Reduce
framework [3], or its variants. Map-Reduce has interested
cloud providers as well, with services like Amazon Elastic
MapReduce now being offered.

This paper describes a middleware that supports Map-
Reduce type API in an environment where the data could
be split between a local cluster and a cloud resource. Data
processing is then performed using computing resources at
both ends. However, to minimize the overall execution time,
we allow for the possibility that the data at one end is
processed using computing resources at another end, i.e., work
stealing. Our middleware considers the rate of processing
together with distribution of data to decide on the optimal
processing of data.

We have evaluated our framework using three data-intensive
applications. We have demonstrated the feasibility of data
processing in a cloud bursting setting, and moreover, have
evaluated our framework’s scalability. Specifically, for the
former, we have compared the following two data analysis
scenarios: 1) centralized processing: a dataset of size X is
stored at one location, and processed using Y computing cores
at the same location, and 2) processing with cloud bursting:
a dataset that is split (size Z at local cluster, and size X −Z
at Amazon S3) is processed using Y/2 computing cores at
local cluster and Y/2 computing cores from Amazon EC2.
The parameter Z is varied to control the skew or unevenness
in the distribution of data. We observe that the average
slowdown ratio of cloud bursting based data processing with
our middleware (over centralized processing) is only 15.55%.
Particularly, the overhead of global reduction is very small for
two of the three applications, and similarly, our middleware is
able to achieve good load balancing. As expected, the cost of
remote data retrieval increases as Z becomes smaller. In terms
of scalability, data processing with our system scales with an
average speedup of 81%, everytime Y is doubled. Overall, we
have shown that cloud bursting can be a feasible option for
data processing, when sufficient data storage and/or computing
resources are not available locally.

The rest of the paper is organized as follows. In the next
section, we discuss the motivating scenarios for cloud bursting.
In Section III, we describe the design and architecture of our
middleware. We will present the evaluation of the system’s
feasibility, performance, and scalability in Section IV. A
discussion of related works is presented in Section V, and
we will conclude and discuss future directions in Section VI.

II. DATA-INTENSIVE COMPUTING WITH CLOUD
BURSTING: MOTIVATION AND NEEDS

We now describe the situations where processing of data in
a hybrid cloud may be desired. We also describe the needs of
a framework that would support data processing with a hybrid
cloud.

Our proposed software framework can be viewed as an im-
plementation of Map-Reduce that can support the transparent
remote data analysis paradigm. In this paradigm, analysis
of data is specified with a high-level API (Map-Reduce or
its variant), but the set of resources for hosting the data
and/or processing it are geographically distributed. With the
growing popularity of cloud-based solutions, one or both of
the resources for hosting the data and processing it could
potentially be entirely or partially on a cloud. For example,

part of the data may be on a supercomputing center, and
another part of the data may be hosted on Amazon Web
Services. This is in clear contrast to solutions like Map-Reduce
and a number of its recent variants [4], [5], [8], [22], [25], [11],
[26], [29], [19], [1], [28], [17], which require that processing
and data be co-located. While the resources are separated,
the analysis must still be specified using a simple API. In
particular, complexities such as data movements must not fall
onto the hands of application developers. This is a discerning
feature from workflow-based approaches [6] for distributed
analysis of data sets.

Supporting such a system would prompt several issues
involving locality. When feasible, co-locating data and compu-
tation would clearly achieve the best performance. However,
in a cloud bursting environment, this would generally not be
the case. Suppose a user wants to process data that is located
in the storage nodes of a supercomputing center. Consider the
case when the user needs to analyze this data, but computing
resources at the supercomputer center are not immediately
available. Rather than submitting a batch job and waiting for
it to be scheduled, the user may prefer to leverage the on-
demand computing resources from a cloud provider. For this
scenario, however, it would be undesirable for the user to
explicitly move and store the data on cloud resources. Instead,
the local data should be transparently moved into the cloud for
processing without effort from the user.

Consider another situation, where a research group has
stored data at a supercomputing center. At some time, the
research group may want to add data from new experiments
or simulations, for which space is not available at the same
supercomputing center. In this case, new data may be made
available on a cloud storage system. Future users of this
data may have to access data from both the supercomputing
center and the cloud. Development of future data analysis
applications will be greatly simplified if the analysis can be
specified with a familiar Map-Reduce type API, keeping the
details of data location and data movement transparent to the
user.

In this paper, we particularly focus on the situation where a
fraction of the data is stored on a local resource, and remaining
fraction is stored on a cloud resource. Similarly, resources for
processing data are available on both the local cluster as well
as on cloud, though the processing power available at both the
ends may not be proportional to the amount of data available
at the respective ends. At the same time, our solution should
still be applicable if storage and/or processing is available only
at either the local resource or the cloud. Similarly, our solution
will also be applicable if the data and/or processing power is
spread across two different cloud providers.

The implementation and the evaluation reported in this
paper is specific to the Amazon Web Services (AWS) cloud,
though the underlying ideas are applicable to any pay-as-you-
go cloud provider.

III. SYSTEM DESIGN

In this section, we first describe the processing API of our
system and compare its similarities and differences with Map-
Reduce. Then we discuss the overall system framework to
support this API with cloud bursting capabilities.
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A. Data Processing API
The data processing framework in our system is referred to

as Generalized Reduction. We show the processing structures
for generalized reduction and the Map-Reduce programming
model with and without the Combine function in Figure 1.
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Fig. 1. Processing Structures

We will summarize the Map-Reduce API [4] as follows. The
map function takes a set of input points and generates a set
of corresponding output (key, value) pairs. The Map-Reduce
library then hashes these intermediate (key, value) pairs and
passes them to the reduce function in such a way that the same
keys are always placed on the same reduce node. This stage
is often referred to as shuffle. The reduce function, which is
also written by the user, accepts a key and a set of values
associated with that key. It merges together these values to
form a possibly smaller set of values. Typically, just zero or
one output value is produced per reduce invocation.

The Map-Reduce framework also offers programmers an
optional Combine function, which can be used to improve
the performance of many of the applications. Before the
(key, value) pairs are emitted from the mapping phase, they
are grouped according to their key values and stored in a buffer
on the map nodes. When this buffer is flushed periodically,
all grouped pairs are immediately reduced using the Combine
function. These intermediate reduced pairs are then emitted
to the reduce function. The use of Combine can decrease the
intermediate data size significantly, and therefore reducing the
amount of (key, value) pairs that must be communicated from
the map and reduce nodes.

We now explain the generalized reduction API, which
also has 2-phases: The local reduction phase aggregates the
processing, combination, and reduction operations into a single

step, shown simply as proc(e) in our figure. Each data
element e is processed and reduced immediately locally before
the next data element is processed. After all data elements
have been processed, a global reduction phase commences.
All reduction objects from various local reduction nodes are
merged with an all-to-all collective operation or a user defined
function to obtain the final result.

The advantage of this design is to avoid the overheads
brought on by intermediate memory requirements, sorting,
grouping, and shuffling, which can degrade performance in
Map-Reduce implementations [12]. Particularly, this advan-
tage turns out to be critical for the cloud bursting scenario,
since it is very important to reduce the inter-cluster commu-
nication.

At first glance, it may appear that our API is very similar to
Map-Reduce with the Combine function. However, there are
significant discerning differences. Using the Combine function
can only reduce communication, that is, the (key, value)
pairs are still generated on each map node and can result in
high memory requirements, causing application slowdowns.
Our generalized reduction API integrates map, combine, and
reduce together while processing each element. Because the
updates to the reduction object are performed directly after
processing, we avoid intermediate memory overheads.

The following are the components in the generalized reduc-
tion API that should be prepared by the application developer:

• Reduction Object: This data structure is designed
by the application developer. However, memory alloca-
tion and access operations to this object are managed by
the middleware for efficiency.

• Local Reduction: The local reduction function spec-
ifies how, after processing one data element, a reduction
object (initially declared by the programmer) is updated.
The result of this processing must be independent of
the order in which data elements are processed on each
processor. The order in which data elements are processed
is determined by the runtime system.

• Global Reduction: In this function, the final results
from multiple copies of a reduction object are combined
into a single reduction object. A user can choose from
one of the several common combination functions already
implemented in the generalized reduction system library
(such as aggregation, concatenation, etc.), or they can
provide one of their own.

The generalized reduction API is motivated by our earlier
work on a system called FREERIDE (FRamework for Rapid
Implementation of Datamining Engines) [13], [14], [12].

B. System Structure
We now explain the architecture of our system and how

the individual components interact with each other.

Data Organization
Our data organization scheme is specifically designed for
maximizing the throughput of the processing units and can
be analyzed in three granularity levels: files, chunks, and
units. First, the data set is divided into several files to satisfy
the compute units’ file system requirements and can also
be distributed. Secondly, the data inside the files are split
into logical chunks. The compute units essentially read or
retrieve the chunks from the files into memory. The decision
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for the size of a chunk depends on the available memory
on the compute units. Finally, each chunk further consists
of data units that need to be processed atomically. Data
units represent the smallest processable data element in the
system. Typically, after the data chunk is read into memory,
a group of data units are sent to the local reduction layer
and processed individually. The number of the data units in a
group is decided according to the cache size of the processing
unit, and therefore, while the logical chunks exploit the
available memory on compute units, the data units maximize
the cache utilization.

A data index file is generated after analyzing the data
set. It holds metadata such as physical locations (data files),
starting offset addresses, size of chunks and number of data
units inside the chunks. When the head node (described later)
starts, it reads the index file in order to generate the job pool.
Each job in job pool corresponds to a chunk in data set.

System Components
A major goal of our system is to enable seamless cloud
bursting for application processing. To support cloud bursting,
our system must be able to manage data execution over
multiple compute clusters and data sources. Figure 2
illustrates our cloud bursting execution environment. Our
system consists of three basic node types: head, master,
and slave nodes. The head node manages the inter-cluster
communication and job assignments among the clusters.
The master node pertaining to each cluster is responsible
for communicating with the head node, as well as the job
distribution among its slave nodes. Finally, the slaves are
responsible for retrieving and processing the data.

We now give detailed information of these node types. The
head node has several responsibilities. The first is assigning
jobs to the requesting clusters. The head generates jobs
according to the data set index/metadata that was generated
by the aforementioned data organizer (separate and not shown
in the figure). Whenever a cluster’s job pool is diminishing, its
master node interacts with the head node to request additional
jobs. Upon receiving job requests, the head node sends suitable
jobs to the requesting cluster. The suitability of a job may
depend on the locality of the data. This mechanism is similar to

that of Hadoop, a popular implementation of Map-Reduce. For
instance, if there are locally available jobs in the cluster, the
head node assigns a group of consecutive jobs to the requesting
cluster. The selection of consecutive jobs is an important
optimization in our system, because it allows the compute
units to sequentially read jobs from the files and increase the
input utilization. Once all local jobs belonging to a cluster are
processed, the jobs that are still available from remote clusters
are assigned. The remote jobs are chosen from files which
the minimum number of nodes are currently processing. This
heuristic minimizes file contention among clusters. The head
node’s secondary responsibility is to aggregate the final result
of the execution. Specifically, after all the jobs are processed
by all clusters, each cluster produces a reduction object that
represents the processed jobs. Subsequently, the head node
collects these objects and reduces them into a final reduction
object.

Next, the master is responsible for managing the slave nodes
in its cluster and distributing the jobs among these slaves. The
master monitors the cluster’s job pool, and when it senses that
it is depleted, it will request a new group of jobs from the head.
After the master receives the set of jobs, they are added into
the pool, and assigned to the requesting slaves individually.

The slaves retrieve and process the assigned jobs using
the aforementioned processing structure. When a job is
assigned, it is immediately read into the slave’s memory.
As we mentioned before, if the data is local, a continuous
read operation is performed for optimization. However, if the
assigned job is in remote location, it must to be retrieved in
chunks, referred to as job stealing in Figure 2. Each slave
retrieves jobs using multiple retrieval threads, to capitalize on
the fast network interconnects in the cluster. After the job is
read into the slave’s memory, it is further split into groups
of data units that can fit into its cache. The local reduction
function is performed on each of these groups.

Load Balancing
The data organization component, along with the pooling
based job distribution enables fairness in load balancing.
As the slaves request jobs using an on-demand basis, the
slave nodes that have higher throughput (e.g., faster compute
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instances inside a cloud cluster) would naturally be ensured
to process more jobs. In similar fashion, a master node also
requests a group of jobs from the head on demand, thus
ensuring that the clusters with more processing power request
would perform more processing.

IV. EXPERIMENTAL RESULTS

We now describe results from a detailed evaluation study
we performed. Particularly, we evaluated the feasibility and
performance of data-intensive computing with cloud bursting
(as enabled by our framework), and then focus on the scala-
bility of the applications in this scenario. We initially describe
the experimental setup used.

A. Experimental Setup

Our local cluster on Ohio State campus contains Intel Xeon
(8 cores) compute nodes with 6GB of DDR400 RAM (with
1 GB dimms). Compute nodes are connected via Infiniband.
A dedicated 4TB storage node (SATA-SCSI) is used to store
data sets for our applications.

For the cloud environment, we use Amazon Web Ser-
vices’ Elastic Compute Cloud (EC2). Large EC2 instances
(m1.large) were chosen for for our experiments. According
to Amazon at the time of writing, these are 64-bit instances
with 7.5 GB of memory. Large instances provide two virtual
cores, and each core further contains two elastic compute units
(which are equivalent to a 1.7 GHz Xeon processor). Large
instances are also rated as having high I/O performance which,
according to Amazon, is amenable to I/O-bound applications,
suitable for supporting our system. Data sets for our applica-
tions are stored in Amazon’s popular Simple Storage Service
(S3).

Three well-known representative data-intensive applications
were used to evaluate our system, with various characteristics:

• K-Nearest Neighbors Search (knn): A classic
database/data mining algorithm. It has low computation,
leading to medium to high I/O demands and the reduction
object is small. For our experiments, the value of k is
set to 1000. The total number of processed elements is
32.1× 109.

• K-Means Clustering (kmeans): Another celebrated data
mining application. It has heavy computation resulting in
low to medium I/O, and a small reduction object. The
value of k is set to 1000. The total number of processed
points is 10.7× 109.

• PageRank (pagerank): Google’s algorithm for deter-
mining web documents’ importance [23]. It has low to
medium computation leading to high I/O, and a very large
reduction object. The number of page links is 50 × 106

with 9.26× 108 edges.
All the data sets used for knn, kmeans, and pagerank

are 120GB. The data sets are divided into 32 files. Moreover,
the total number of jobs generated from the data sets is 960
for each application.

B. Evaluation of Cloud Bursting

The goal of this first set of experiments is to evaluate
the feasibility of using cloud bursting or hybrid configuration
for data-intensive computing. Particularly, we want to see if,
despite overheads like global reduction across geographically

distributed clusters and remote data retrieval, application per-
formance can be scaled.

We execute our three applications over five configurations.
These configurations involve the same aggregate computing
power. In the first two configurations, which are local
and cloud, the computing resources and the datasets are at
the same location. In other words, these two configurations
involve centralized storage and processing, and are used as the
baseline. The next three configurations involve a 50-50 split of
computing power across local and cloud resources. Moreover,
within these three configurations, there is a varying amount of
skew or unevenness in the distribution of data. For example,
the data distribution for env-33/67 is 33% (40GB) of the
data is hosted locally, while 67% (80GB) is being hosted in
Amazon S3. By varying the amount of data skew, we increase
the amount of remote data retrieval that may be needed, and
thus can observe its impact on the overall performance. The
five configurations are summarized below:

Env. Data Dist. Cores
All app. knn & pagerank kmeans

Local S3 Local EC2 Local EC2
local 100% 0% 32 0 32 0
cloud 100% 0% 0 32 0 44
50/50 50% 50% 16 16 16 22
33/67 33% 67% 16 16 16 22
17/83 17% 83% 16 16 16 22

On the bottom of Figures 3(a), 3(b), and 3(c), the envi-
ronment, env-* reflect these setting labels. Furthermore in
the figures, the pair (m, n) below the env-* setting denotes
that m cores were used in the local cluster and n cores
were employed in the cloud. The number of cores for each
application and cluster is empirically determined according to
the computational power they provide. We set the throughput
power of each cluster as close as possible and evaluated the
overhead of usage of the cloud with the local resources. So for
instance, while the compute cores are equally halved for knn
and pagerank, the kmeans application requires slightly
more cores on the cloud. Our experience determined that 22
EC2 cores resulted in a more equal comparison with 16 local
cluster nodes due to the compute intensive nature of kmeans.

Due to the performance variability of EC2 during certain
times, each execution configuration was repeated at least three
times and the shortest execution time is being presented in the
figures. In Figure 3, we report the overall execution time as
the sum of processing time, time spent on data retrieval, and
sync. time. The sync. time can be viewed as a “barrier” wait
time, which is observed when the threads must synchronize
on either the cluster or cloud to perform a global reduction.
Another contribution to the sync. time is the time that either
system must wait for the other to finish before the final result
can be produced. For the first two configurations, env-local
and env-cloud, there are no inter-cluster communication
synchronization costs. However, there are still synchronization
overheads due to local combination and intra-cluster idle time
due to the slight variations in processing throughput among
the slave nodes. Recall that for the remaining configurations,
env-50/50, env-33/67, and env-17/83, we halved the
processing power of the local and cloud environment config-
urations. Therefore, the total throughput of the system was
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Fig. 3. Cloud Bursting Execution over Various Environment

not changed. These configurations, however, still introduce
additional overheads due to the global combination: inter-
cluster load imbalance to the synchronization times and other
system overheads such as transferred messages among head
and master nodes.

Figure 3(a) shows the results of the knn application, which
requires low amounts of computation per job processed. Com-
paring env-local with env-cloud, we can see that the
cloud-based version has a higher synchronization overhead.
The main reasons for this can be attributed to (1) the slight
differences in processing throughputs among the slave nodes,
which results in intra-cluster load imbalance, and (2) higher
network delays between the master and head nodes in the
env-cloud configuration. We can also observe that the

env-cloud configuration has shorter retrieval time than
env-local. This indicates that the available bandwidth
between the EC2 instances and S3 was efficiently utilized by
our multi-threaded data retrieval approach.

The next three environment configurations, env-50/50,
env-33/67, and env-17/83 run the applications over the
cloud and the local cluster in parallel. Notice that the overall
execution time tends to increase over these configurations.
Since knn is data intensive, the data retrieval time dominates
both processing and synchronization times. Furthermore, as
the proportion of data increases in S3, the retrieval time on
both clusters increases.

In Figure 3(b), we can clearly see that this application is
dominated by computation. Even high fraction of the data is
stored in S3, the computation time takes longer than the data
retrieval time in local cluster. The overheads of the hybrid
configurations are quite low. In fact, env-17/83 is still
performing at around 90% efficiency of env-local.

Next, we consider the pagerank application, shown
in Figure 3(c). As mentioned earlier, and as we can see,
pagerank is quite balanced between computation and data
retrieval. Again, we can observe that data retrieval times
are increasing across the varying data proportions. In the
env-17/83 case, the application is operating at 76% effi-
ciency, which is expected due to the increased requirements of
data retrieval. Another significant contribution to the overhead
is the larger sync time due to the large reduction object.

The displacement of stored data from local clusters to S3
is identical with moving locally available jobs to the cloud.
Therefore, the local cluster finishes its local jobs sooner
and fetches more from S3, which results in higher retrieval
times on local cluster. For clarity, Table I provides detailed
information on the number of processed and stolen jobs by
the clusters according to the applications and environment
configurations. The right-most column beyond the dotted line
shows the number of jobs the local cluster stole from S3 after
processing all of its locally stored jobs.

env-* Jobs Processed
EC2 Local (stolen)

knn 50/50 480 480 0
33/67 576 384 64
17/83 672 288 128

kmeans 50/50 480 480 0
33/67 512 448 128
17/83 544 416 256

pagerank 50/50 480 480 0
33/67 528 432 112
17/83 560 400 240

TABLE I
JOB ASSIGNMENT PER APPLICATION

We further analyze system performance in Table II, by
focusing on the specific overheads and overall slowdowns.
The global reduction refers to the elapsed time for combining
and calculating the final reduction object. The idle time refers
to the elapsed time in the case where one cluster is waiting
for the other to finish processing at the end of execution
and cannot steal jobs. The total slowdowns are derived for
env-50/50, env-33/67, and env-17/83 by comparing
with env-local as the baseline.
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env-* Global
Reduction

Idle Time Total
SlowdownLocal EC2

knn
50/50 0.072 16.212 0 6.546
33/67 0.076 0 10.556 34.224
17/83 0.076 0 15.743 96.067

kmeans
50/50 0.067 0 93.871 20.430
33/67 0.066 0 31.232 142.403
17/83 0.066 0 25.101 243.312

pagerank
50/50 36.589 0 17.727 72.919
33/67 41.320 0 22.005 131.321
17/83 42.498 0 52.056 214.549

TABLE II
SLOWDOWNS OF THE APPLICATIONS WITH RESPECT TO DATA

DISTRIBUTION (IN SECONDS)

In knn, for env-50/50, the local cluster moves on to the
global reduction phase before the EC2 cluster, and therefore
local cluster must idle. Notice that the total slowdown is
smaller than the idle time. This was a somewhat surprising
result, and we believe the reason for this is that the clusters
finish processing their assigned jobs very close to each other
and the systems cannot steal jobs. Thus, the idle time might be
maximized and total job processing time is minimized. Oppo-
site behaviors are observed in all other environments where
the EC2 cluster initiates global reduction before the local
cluster. The elapsed time during the global reduction phase
is short because of the small reduction object size. The ratios
of total slowdown with respect to the total execution times
are 1.7%, 15.4% and 45.9% for env-50/50, env-33/67,
and 17/83 respectively. The data retrieval time makes up the
largest portion of the total slowdown because of the increasing
data imbalance between the clusters.

For kmeans, the slowdowns increase as the data set is
disproportioned from local cluster to EC2. The reason is
essentially the same with knn. The additional cost is due
to remote processing at the local cluster and the extra jobs
stored in S3. The worst case total slowdown ratio for execu-
tion time is 10.4%, which is significantly smaller than knn.
Synchronization overheads range from only 1% to 4.1% for
all configurations. The global reduction does not introduce
significant overhead to the system. The overheads for the
cloud bursting environments are small compared to the base
versions, suggesting that compute-intensive applications can
exploit cloud bursting with a very little penalty.

Finally, we analyze pagerank application. The slowdown
ratios range from 10.5% to 30.8%. The reason of these
higher slowdown ratios is because of the synchronization
times. Considering the base and hybrid cloud environments,
the synchronization times of base environments are relatively
smaller than the hybrid cloud. In the base environments,
where inter-cluster communication is avoided, the reduction
object need not be transferred between the master and head
node. However, in the case of hybrid cloud environments, the
reduction object needs to be exchanged.

If we consider the large size of the reduction object (∼ 300
MB), the introduction of the inter-cluster communication sig-
nificantly increases the synchronization times of the distributed
data configurations, resulting in overheads from 6.8% to
12.1%. Our conclusion is that, if the reduction object size is
fixed, then the computation and data retrieval times typically

dominate transfer time, minimizing the synchronization time.
However, if the reduction object size increases relative to input
data size, it may not be feasible to use cloud bursting due to
the increasing costs of transferring the reduction object.

We now summarize the above observations. The perfor-
mance of our framework is high with compute intensive ap-
plications, and we showed that cloud bursting is feasible since
the typical system overhead is manageable. We observe that
the proportion of data distribution and allocated throughput are
important parameters, especially for data intensive applications
where the execution is sensitive to data retrieval. Because data
retrieval accounts for the largest portion of overheads, having a
perfect distribution would likely minimize the total slowdown.
We also showed that the size of the reduction object can
result in additional overhead during inter-cluster communica-
tion. In our experience running experiments, the virtualized
environment of EC2 can occasionally cause variability in
performance, which exacerbates overheads. Our pooling based
load balancing system and long running nature of the target
applications help normalizing these unpredictable performance
changes.

C. Scalability of the System
In this section, we present the results on the scalability of

our cloud bursting data execution model. We placed all data
sets in S3, and to show scalability, we vary the amount of
cores used. In the bottom of Figures 4(a), 4(b) and 4(c), the
pair (m, n) denotes the number of cores used locally and in
the cloud respectively. For this set of experiments, we fixed
m = n and then varied m = n = 4, 8, and 16.

Let us first discuss knn, in Figure 4(a). Focusing on
the (4, 4) configuration, the synchronization time of EC2 is
significantly higher than the local cluster. The reason for this
increase is due to the imbalance in job distribution. The small
number of active cores result in small processing throughput,
thus larger synchronization overhead. The synchronization
overheads become smaller while the number of cores increase.
For all configurations, the synchronization overheads of cloud
are higher than the local cluster, meaning that the cloud
finishes processing all the assigned jobs and start waiting for
the local cluster. Although knn is data intensive and all the
data is located in S3, the synchronization overheads of our
system only range between 0.01% to 0.03%. Furthermore, the
speedups of the configurations change from 73.3% to 82.4%.

In Figure 4(b), we show the scalability results of kmeans.
Because kmeans is compute-intensive and the data set is
fairly large, the overall computation time is quite high. Com-
pared with knn, the scalability of the system is much more
dependent on processing throughput. Hence, increasing the
number of cores is much more effective here, leading to
greater speedups. The synchronization overhead in this set
of experiment ranges from 0.1% to 2.5% and the maximum
synchronization overhead is seen in the (4, 4) configuration on
cloud cluster. The reason is similar to knn: The small number
of cores results in longer job processing times and the idle time
of the clusters increases.

The scalability of pagerank is presented in Fig-
ure 4(c). Interestingly, comparing with the other applications,
pagerank does not perform as well in terms of scalability.
There are several reasons for this: First, pagerank has mod-
erate to high I/O requirement, and the data retrieval from S3 to
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Fig. 4. System Scalability

local cluster slows down the performance. Secondly, recall that
the reduction object size is quite large. For each configuration
the reduction object must be exchanged during the global
reduction phase. While the number of cores increases, the
transfer cost remains the fixed and this negatively impacts
scalability. The synchronization overheads range from 3.3% to
13.3%, and the worst case synchronization time is observed in
(32, 32) configuration. The reason is due to the short execution
time of the application and the high overhead of the reduction
object exchange.

Finally, we summarize our scalability results. Overall, we
have made several observations on the scalability of our
system: (1) Data intensive applications are less scalable than
the compute intensive applications. Furthermore, if large pro-

portions of data is hosted in the cloud, additional slowdown
is expected due to remote transfer. (2) If the inter-cluster
communication cost is high, it can cause a fixed overhead
which cannot be reduced through increasing the number of
cores. We observed this issue with pagerank, and therefore,
the scalability can be limited in this way. (3) If the application
is compute-intensive and the data set size is large, then all the
other overheads are dominated by the computation and the
the system scales quite well, as observed for kmeans. Since
our data intensive middleware takes advantage of the cloud
environment, long execution times and processing large data
sets are desirable.

V. RELATED WORK

There have been a number of recent efforts focusing on
the use of cloud computing for scientific and data-intensive
applications.

Deelman, et al. described their initial foray into using of
AWS resources to support the Montage application [7]. A
more recent effort by these authors [15] examined application
performance and cost for workflows when data is deployed
on various cloud storage options: S3, NFS, GlusterFS, and
PVFS. Hill and Humphrey performed a quantitative evaluation
of 64-bit Amazon EC2 as a replacement of Gigabit Ethernet
Commodity Clusters for small-scale scientific applications
[10]. They found that EC2 is not the best platform for tightly
coupled synchronized applications with frequent communi-
cation between instances because of high network latency.
However, its on-demand capabilities with no queuing front-end
(unlike traditional HPC environment) makes for a compelling
environment.

Several closely-related efforts have addressed the “cloud
bursting” compute model, where local resources elastically
allocate cloud instances for improving application through-
put/response time. An early insight into this model came from
Palankar et al.. They extensively evaluated S3 for supporting
large-scale scientific computations [24]. In their study, they
observed that data retrieval costs can be expensive for such
applications, and the authors discussed possibility of instead
processing S3 data in EC2 (where data transfers are free) in
lieu of downloading data sets off site.

De Assunção et al. considered various job scheduling strate-
gies which integrated compute nodes at a local site and in the
cloud [2]. Each job (which may include a time constraint) is
vetted on submission according to one of the strategies, and
their system decides whether to execute the job on the cluster
or redirect it to the cloud. Marshall et al. proposed Elastic Site
[21], which transparently extends the computational limita-
tions of the local cluster to the cloud. Their middleware makes
calculated decisions on EC2 node (de)allocation based on the
local cluster’s job queue. In contrast, we consider scenarios
where data sets might be also hosted on remote clouds. Our
system supports pooling based dynamic load balancing among
clusters, and allows for work stealing.

Another set of related works involve the celebrated class
of Map-Reduce [3] applications. Driven by its popularity,
Cloud providers including Google App Engine [9], Amazon
Web Services, among others, began offering Map-Reduce as
a service.

Several efforts have addressed issues in deploying Map-
Reduce over the Cloud. For instance, the authors propose
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a preliminary heuristic for cost-effectively selecting a set of
Cloud resources [16]. Related to performance, Zaharia, et al.
analyzed speculative execution in Hadoop Map-Reduce and
revealed that its assumption on machine homogeneity reduces
performance [29]. They proposed the Longest Approximate
Time to End scheduling heuristic for Hadoop, which improved
performance in heterogeneous environments. In another related
effort, Lin et al. have developed MOON (MapReduce On Op-
portunistic eNvironments) [19], which further considers sce-
narios where cycles available on each node can continuously
vary. The dynamic load balancing aspect of our middleware
has a similar goal, but our work is specific to AWS.

VI. CONCLUSION

Hybrid clouds are emerging as an attractive environment
for high performance and data-intensive computing. This
paper describes a framework for enabling the development
and execution of data-intensive computations. Our extensive
evaluation has shown that the combination of local and cloud
resources can be effectively used, with only a small slowdown
over processing using the same aggregate computing power
at one location. Thus, cloud bursting can allow flexibility in
combining limited local resources with pay-as-you-go cloud
resources, while maintaining performance efficiency. Partic-
ularly, 1) inter-cluster communication overhead is quite low
for most data-intensive applications, 2) our middleware is
able to effectively balance the amount of computation at
both ends, even if the initial data distribution is not even,
and 3) while remote data retrieval overheads do increase as
the disproportion in data distribution increases, the overall
slowdown is modest for most applications.
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